| Mathbox for Ender Ting |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ormklocald | Structured version Visualization version GIF version | ||
| Description: If elements of a certain sequence are ordered with respect to a certain relation, then its consecutive elements satisfy that relation (so-called "local monotonicity"). (Contributed by Ender Ting, 30-Apr-2025.) |
| Ref | Expression |
|---|---|
| ormklocald.1 | ⊢ (𝜑 → 𝑅 Or 𝑆) |
| ormklocald.2 | ⊢ (𝜑 → ∀𝑘 ∈ (0..^(𝑇 + 1))(𝐵‘𝑘) ∈ 𝑆) |
| ormklocald.3 | ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵‘𝑘)𝑅(𝐵‘𝑡))) |
| Ref | Expression |
|---|---|
| ormklocald | ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑇)(𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7388 | . . . . 5 ⊢ (𝑘 + 1) ∈ V | |
| 2 | 1 | isseti 3455 | . . . 4 ⊢ ∃𝑡 𝑡 = (𝑘 + 1) |
| 3 | elfzoelz 13566 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ) | |
| 4 | 3 | zred 12587 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℝ) |
| 5 | 4 | ltp1d 12063 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 < (𝑘 + 1)) |
| 6 | breq2 5099 | . . . . . . . . 9 ⊢ (𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 ↔ 𝑘 < (𝑘 + 1))) | |
| 7 | 5, 6 | syl5ibrcom 247 | . . . . . . . 8 ⊢ (𝑘 ∈ (0..^𝑇) → (𝑡 = (𝑘 + 1) → 𝑘 < 𝑡)) |
| 8 | 7 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → 𝑘 < 𝑡)) |
| 9 | 1z 12512 | . . . . . . . . . . . 12 ⊢ 1 ∈ ℤ | |
| 10 | fzoaddel 13624 | . . . . . . . . . . . 12 ⊢ ((𝑘 ∈ (0..^𝑇) ∧ 1 ∈ ℤ) → (𝑘 + 1) ∈ ((0 + 1)..^(𝑇 + 1))) | |
| 11 | 9, 10 | mpan2 691 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ∈ ((0 + 1)..^(𝑇 + 1))) |
| 12 | 0p1e1 12253 | . . . . . . . . . . . 12 ⊢ (0 + 1) = 1 | |
| 13 | 12 | oveq1i 7365 | . . . . . . . . . . 11 ⊢ ((0 + 1)..^(𝑇 + 1)) = (1..^(𝑇 + 1)) |
| 14 | 11, 13 | eleqtrdi 2843 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ∈ (1..^(𝑇 + 1))) |
| 15 | eleq1 2821 | . . . . . . . . . 10 ⊢ (𝑡 = (𝑘 + 1) → (𝑡 ∈ (1..^(𝑇 + 1)) ↔ (𝑘 + 1) ∈ (1..^(𝑇 + 1)))) | |
| 16 | 14, 15 | syl5ibrcom 247 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0..^𝑇) → (𝑡 = (𝑘 + 1) → 𝑡 ∈ (1..^(𝑇 + 1)))) |
| 17 | 16 | adantl 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → 𝑡 ∈ (1..^(𝑇 + 1)))) |
| 18 | ormklocald.3 | . . . . . . . . . . 11 ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵‘𝑘)𝑅(𝐵‘𝑡))) | |
| 19 | 18 | r19.21bi 3225 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → ∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵‘𝑘)𝑅(𝐵‘𝑡))) |
| 20 | 19 | r19.21bi 3225 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑘 < 𝑡 → (𝐵‘𝑘)𝑅(𝐵‘𝑡))) |
| 21 | 20 | ex 412 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝑡 ∈ (1..^(𝑇 + 1)) → (𝑘 < 𝑡 → (𝐵‘𝑘)𝑅(𝐵‘𝑡)))) |
| 22 | 17, 21 | syld 47 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵‘𝑘)𝑅(𝐵‘𝑡)))) |
| 23 | 8, 22 | mpdd 43 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → (𝐵‘𝑘)𝑅(𝐵‘𝑡))) |
| 24 | fveq2 6831 | . . . . . . 7 ⊢ (𝑡 = (𝑘 + 1) → (𝐵‘𝑡) = (𝐵‘(𝑘 + 1))) | |
| 25 | 24 | breq2d 5107 | . . . . . 6 ⊢ (𝑡 = (𝑘 + 1) → ((𝐵‘𝑘)𝑅(𝐵‘𝑡) ↔ (𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1)))) |
| 26 | 23, 25 | mpbidi 241 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → (𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1)))) |
| 27 | 26 | eximdv 1918 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (∃𝑡 𝑡 = (𝑘 + 1) → ∃𝑡(𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1)))) |
| 28 | 2, 27 | mpi 20 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → ∃𝑡(𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1))) |
| 29 | ax5e 1913 | . . 3 ⊢ (∃𝑡(𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1)) → (𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1))) | |
| 30 | 28, 29 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1))) |
| 31 | 30 | ralrimiva 3125 | 1 ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑇)(𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ∀wral 3048 class class class wbr 5095 Or wor 5528 ‘cfv 6489 (class class class)co 7355 0cc0 11017 1c1 11018 + caddc 11020 < clt 11157 ℤcz 12479 ..^cfzo 13561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-n0 12393 df-z 12480 df-uz 12743 df-fz 13415 df-fzo 13562 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |