| Mathbox for Ender Ting |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ormklocald | Structured version Visualization version GIF version | ||
| Description: If elements of a certain sequence are ordered with respect to a certain relation, then its consecutive elements satisfy that relation (so-called "local monotonicity"). (Contributed by Ender Ting, 30-Apr-2025.) |
| Ref | Expression |
|---|---|
| ormklocald.1 | ⊢ (𝜑 → 𝑅 Or 𝑆) |
| ormklocald.2 | ⊢ (𝜑 → ∀𝑘 ∈ (0..^(𝑇 + 1))(𝐵‘𝑘) ∈ 𝑆) |
| ormklocald.3 | ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵‘𝑘)𝑅(𝐵‘𝑡))) |
| Ref | Expression |
|---|---|
| ormklocald | ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑇)(𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7402 | . . . . 5 ⊢ (𝑘 + 1) ∈ V | |
| 2 | 1 | isseti 3462 | . . . 4 ⊢ ∃𝑡 𝑡 = (𝑘 + 1) |
| 3 | elfzoelz 13596 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ) | |
| 4 | 3 | zred 12614 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℝ) |
| 5 | 4 | ltp1d 12089 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 < (𝑘 + 1)) |
| 6 | breq2 5106 | . . . . . . . . 9 ⊢ (𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 ↔ 𝑘 < (𝑘 + 1))) | |
| 7 | 5, 6 | syl5ibrcom 247 | . . . . . . . 8 ⊢ (𝑘 ∈ (0..^𝑇) → (𝑡 = (𝑘 + 1) → 𝑘 < 𝑡)) |
| 8 | 7 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → 𝑘 < 𝑡)) |
| 9 | 1z 12539 | . . . . . . . . . . . 12 ⊢ 1 ∈ ℤ | |
| 10 | fzoaddel 13654 | . . . . . . . . . . . 12 ⊢ ((𝑘 ∈ (0..^𝑇) ∧ 1 ∈ ℤ) → (𝑘 + 1) ∈ ((0 + 1)..^(𝑇 + 1))) | |
| 11 | 9, 10 | mpan2 691 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ∈ ((0 + 1)..^(𝑇 + 1))) |
| 12 | 0p1e1 12279 | . . . . . . . . . . . 12 ⊢ (0 + 1) = 1 | |
| 13 | 12 | oveq1i 7379 | . . . . . . . . . . 11 ⊢ ((0 + 1)..^(𝑇 + 1)) = (1..^(𝑇 + 1)) |
| 14 | 11, 13 | eleqtrdi 2838 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ∈ (1..^(𝑇 + 1))) |
| 15 | eleq1 2816 | . . . . . . . . . 10 ⊢ (𝑡 = (𝑘 + 1) → (𝑡 ∈ (1..^(𝑇 + 1)) ↔ (𝑘 + 1) ∈ (1..^(𝑇 + 1)))) | |
| 16 | 14, 15 | syl5ibrcom 247 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0..^𝑇) → (𝑡 = (𝑘 + 1) → 𝑡 ∈ (1..^(𝑇 + 1)))) |
| 17 | 16 | adantl 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → 𝑡 ∈ (1..^(𝑇 + 1)))) |
| 18 | ormklocald.3 | . . . . . . . . . . 11 ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵‘𝑘)𝑅(𝐵‘𝑡))) | |
| 19 | 18 | r19.21bi 3227 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → ∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵‘𝑘)𝑅(𝐵‘𝑡))) |
| 20 | 19 | r19.21bi 3227 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑘 < 𝑡 → (𝐵‘𝑘)𝑅(𝐵‘𝑡))) |
| 21 | 20 | ex 412 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝑡 ∈ (1..^(𝑇 + 1)) → (𝑘 < 𝑡 → (𝐵‘𝑘)𝑅(𝐵‘𝑡)))) |
| 22 | 17, 21 | syld 47 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵‘𝑘)𝑅(𝐵‘𝑡)))) |
| 23 | 8, 22 | mpdd 43 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → (𝐵‘𝑘)𝑅(𝐵‘𝑡))) |
| 24 | fveq2 6840 | . . . . . . 7 ⊢ (𝑡 = (𝑘 + 1) → (𝐵‘𝑡) = (𝐵‘(𝑘 + 1))) | |
| 25 | 24 | breq2d 5114 | . . . . . 6 ⊢ (𝑡 = (𝑘 + 1) → ((𝐵‘𝑘)𝑅(𝐵‘𝑡) ↔ (𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1)))) |
| 26 | 23, 25 | mpbidi 241 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → (𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1)))) |
| 27 | 26 | eximdv 1917 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (∃𝑡 𝑡 = (𝑘 + 1) → ∃𝑡(𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1)))) |
| 28 | 2, 27 | mpi 20 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → ∃𝑡(𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1))) |
| 29 | ax5e 1912 | . . 3 ⊢ (∃𝑡(𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1)) → (𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1))) | |
| 30 | 28, 29 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1))) |
| 31 | 30 | ralrimiva 3125 | 1 ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑇)(𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∀wral 3044 class class class wbr 5102 Or wor 5538 ‘cfv 6499 (class class class)co 7369 0cc0 11044 1c1 11045 + caddc 11047 < clt 11184 ℤcz 12505 ..^cfzo 13591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-fzo 13592 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |