Users' Mathboxes Mathbox for Ender Ting < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ormklocald Structured version   Visualization version   GIF version

Theorem ormklocald 47034
Description: If elements of a certain sequence are ordered with respect to a certain relation, then its consecutive elements satisfy that relation (so-called "local monotonicity"). (Contributed by Ender Ting, 30-Apr-2025.)
Hypotheses
Ref Expression
ormklocald.1 (𝜑𝑅 Or 𝑆)
ormklocald.2 (𝜑 → ∀𝑘 ∈ (0..^(𝑇 + 1))(𝐵𝑘) ∈ 𝑆)
ormklocald.3 (𝜑 → ∀𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵𝑘)𝑅(𝐵𝑡)))
Assertion
Ref Expression
ormklocald (𝜑 → ∀𝑘 ∈ (0..^𝑇)(𝐵𝑘)𝑅(𝐵‘(𝑘 + 1)))
Distinct variable groups:   𝑡,𝐵   𝑡,𝑅   𝑡,𝑇   𝜑,𝑘,𝑡
Allowed substitution hints:   𝐵(𝑘)   𝑅(𝑘)   𝑆(𝑡,𝑘)   𝑇(𝑘)

Proof of Theorem ormklocald
StepHypRef Expression
1 ovex 7388 . . . . 5 (𝑘 + 1) ∈ V
21isseti 3455 . . . 4 𝑡 𝑡 = (𝑘 + 1)
3 elfzoelz 13566 . . . . . . . . . . 11 (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ)
43zred 12587 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℝ)
54ltp1d 12063 . . . . . . . . 9 (𝑘 ∈ (0..^𝑇) → 𝑘 < (𝑘 + 1))
6 breq2 5099 . . . . . . . . 9 (𝑡 = (𝑘 + 1) → (𝑘 < 𝑡𝑘 < (𝑘 + 1)))
75, 6syl5ibrcom 247 . . . . . . . 8 (𝑘 ∈ (0..^𝑇) → (𝑡 = (𝑘 + 1) → 𝑘 < 𝑡))
87adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → 𝑘 < 𝑡))
9 1z 12512 . . . . . . . . . . . 12 1 ∈ ℤ
10 fzoaddel 13624 . . . . . . . . . . . 12 ((𝑘 ∈ (0..^𝑇) ∧ 1 ∈ ℤ) → (𝑘 + 1) ∈ ((0 + 1)..^(𝑇 + 1)))
119, 10mpan2 691 . . . . . . . . . . 11 (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ∈ ((0 + 1)..^(𝑇 + 1)))
12 0p1e1 12253 . . . . . . . . . . . 12 (0 + 1) = 1
1312oveq1i 7365 . . . . . . . . . . 11 ((0 + 1)..^(𝑇 + 1)) = (1..^(𝑇 + 1))
1411, 13eleqtrdi 2843 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ∈ (1..^(𝑇 + 1)))
15 eleq1 2821 . . . . . . . . . 10 (𝑡 = (𝑘 + 1) → (𝑡 ∈ (1..^(𝑇 + 1)) ↔ (𝑘 + 1) ∈ (1..^(𝑇 + 1))))
1614, 15syl5ibrcom 247 . . . . . . . . 9 (𝑘 ∈ (0..^𝑇) → (𝑡 = (𝑘 + 1) → 𝑡 ∈ (1..^(𝑇 + 1))))
1716adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → 𝑡 ∈ (1..^(𝑇 + 1))))
18 ormklocald.3 . . . . . . . . . . 11 (𝜑 → ∀𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵𝑘)𝑅(𝐵𝑡)))
1918r19.21bi 3225 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0..^𝑇)) → ∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵𝑘)𝑅(𝐵𝑡)))
2019r19.21bi 3225 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑘 < 𝑡 → (𝐵𝑘)𝑅(𝐵𝑡)))
2120ex 412 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑇)) → (𝑡 ∈ (1..^(𝑇 + 1)) → (𝑘 < 𝑡 → (𝐵𝑘)𝑅(𝐵𝑡))))
2217, 21syld 47 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵𝑘)𝑅(𝐵𝑡))))
238, 22mpdd 43 . . . . . 6 ((𝜑𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → (𝐵𝑘)𝑅(𝐵𝑡)))
24 fveq2 6831 . . . . . . 7 (𝑡 = (𝑘 + 1) → (𝐵𝑡) = (𝐵‘(𝑘 + 1)))
2524breq2d 5107 . . . . . 6 (𝑡 = (𝑘 + 1) → ((𝐵𝑘)𝑅(𝐵𝑡) ↔ (𝐵𝑘)𝑅(𝐵‘(𝑘 + 1))))
2623, 25mpbidi 241 . . . . 5 ((𝜑𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → (𝐵𝑘)𝑅(𝐵‘(𝑘 + 1))))
2726eximdv 1918 . . . 4 ((𝜑𝑘 ∈ (0..^𝑇)) → (∃𝑡 𝑡 = (𝑘 + 1) → ∃𝑡(𝐵𝑘)𝑅(𝐵‘(𝑘 + 1))))
282, 27mpi 20 . . 3 ((𝜑𝑘 ∈ (0..^𝑇)) → ∃𝑡(𝐵𝑘)𝑅(𝐵‘(𝑘 + 1)))
29 ax5e 1913 . . 3 (∃𝑡(𝐵𝑘)𝑅(𝐵‘(𝑘 + 1)) → (𝐵𝑘)𝑅(𝐵‘(𝑘 + 1)))
3028, 29syl 17 . 2 ((𝜑𝑘 ∈ (0..^𝑇)) → (𝐵𝑘)𝑅(𝐵‘(𝑘 + 1)))
3130ralrimiva 3125 1 (𝜑 → ∀𝑘 ∈ (0..^𝑇)(𝐵𝑘)𝑅(𝐵‘(𝑘 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2113  wral 3048   class class class wbr 5095   Or wor 5528  cfv 6489  (class class class)co 7355  0cc0 11017  1c1 11018   + caddc 11020   < clt 11157  cz 12479  ..^cfzo 13561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-n0 12393  df-z 12480  df-uz 12743  df-fz 13415  df-fzo 13562
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator