Users' Mathboxes Mathbox for Ender Ting < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ormklocald Structured version   Visualization version   GIF version

Theorem ormklocald 46865
Description: If elements of a certain sequence are ordered with respect to a certain relation, then its consecutive elements satisfy that relation (so-called "local monotonicity"). (Contributed by Ender Ting, 30-Apr-2025.)
Hypotheses
Ref Expression
ormklocald.1 (𝜑𝑅 Or 𝑆)
ormklocald.2 (𝜑 → ∀𝑘 ∈ (0..^(𝑇 + 1))(𝐵𝑘) ∈ 𝑆)
ormklocald.3 (𝜑 → ∀𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵𝑘)𝑅(𝐵𝑡)))
Assertion
Ref Expression
ormklocald (𝜑 → ∀𝑘 ∈ (0..^𝑇)(𝐵𝑘)𝑅(𝐵‘(𝑘 + 1)))
Distinct variable groups:   𝑡,𝐵   𝑡,𝑅   𝑡,𝑇   𝜑,𝑘,𝑡
Allowed substitution hints:   𝐵(𝑘)   𝑅(𝑘)   𝑆(𝑡,𝑘)   𝑇(𝑘)

Proof of Theorem ormklocald
StepHypRef Expression
1 ovex 7422 . . . . 5 (𝑘 + 1) ∈ V
21isseti 3468 . . . 4 𝑡 𝑡 = (𝑘 + 1)
3 elfzoelz 13626 . . . . . . . . . . 11 (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ)
43zred 12644 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℝ)
54ltp1d 12119 . . . . . . . . 9 (𝑘 ∈ (0..^𝑇) → 𝑘 < (𝑘 + 1))
6 breq2 5113 . . . . . . . . 9 (𝑡 = (𝑘 + 1) → (𝑘 < 𝑡𝑘 < (𝑘 + 1)))
75, 6syl5ibrcom 247 . . . . . . . 8 (𝑘 ∈ (0..^𝑇) → (𝑡 = (𝑘 + 1) → 𝑘 < 𝑡))
87adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → 𝑘 < 𝑡))
9 1z 12569 . . . . . . . . . . . 12 1 ∈ ℤ
10 fzoaddel 13684 . . . . . . . . . . . 12 ((𝑘 ∈ (0..^𝑇) ∧ 1 ∈ ℤ) → (𝑘 + 1) ∈ ((0 + 1)..^(𝑇 + 1)))
119, 10mpan2 691 . . . . . . . . . . 11 (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ∈ ((0 + 1)..^(𝑇 + 1)))
12 0p1e1 12309 . . . . . . . . . . . 12 (0 + 1) = 1
1312oveq1i 7399 . . . . . . . . . . 11 ((0 + 1)..^(𝑇 + 1)) = (1..^(𝑇 + 1))
1411, 13eleqtrdi 2839 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ∈ (1..^(𝑇 + 1)))
15 eleq1 2817 . . . . . . . . . 10 (𝑡 = (𝑘 + 1) → (𝑡 ∈ (1..^(𝑇 + 1)) ↔ (𝑘 + 1) ∈ (1..^(𝑇 + 1))))
1614, 15syl5ibrcom 247 . . . . . . . . 9 (𝑘 ∈ (0..^𝑇) → (𝑡 = (𝑘 + 1) → 𝑡 ∈ (1..^(𝑇 + 1))))
1716adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → 𝑡 ∈ (1..^(𝑇 + 1))))
18 ormklocald.3 . . . . . . . . . . 11 (𝜑 → ∀𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵𝑘)𝑅(𝐵𝑡)))
1918r19.21bi 3230 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0..^𝑇)) → ∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵𝑘)𝑅(𝐵𝑡)))
2019r19.21bi 3230 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑘 < 𝑡 → (𝐵𝑘)𝑅(𝐵𝑡)))
2120ex 412 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑇)) → (𝑡 ∈ (1..^(𝑇 + 1)) → (𝑘 < 𝑡 → (𝐵𝑘)𝑅(𝐵𝑡))))
2217, 21syld 47 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵𝑘)𝑅(𝐵𝑡))))
238, 22mpdd 43 . . . . . 6 ((𝜑𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → (𝐵𝑘)𝑅(𝐵𝑡)))
24 fveq2 6860 . . . . . . 7 (𝑡 = (𝑘 + 1) → (𝐵𝑡) = (𝐵‘(𝑘 + 1)))
2524breq2d 5121 . . . . . 6 (𝑡 = (𝑘 + 1) → ((𝐵𝑘)𝑅(𝐵𝑡) ↔ (𝐵𝑘)𝑅(𝐵‘(𝑘 + 1))))
2623, 25mpbidi 241 . . . . 5 ((𝜑𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → (𝐵𝑘)𝑅(𝐵‘(𝑘 + 1))))
2726eximdv 1917 . . . 4 ((𝜑𝑘 ∈ (0..^𝑇)) → (∃𝑡 𝑡 = (𝑘 + 1) → ∃𝑡(𝐵𝑘)𝑅(𝐵‘(𝑘 + 1))))
282, 27mpi 20 . . 3 ((𝜑𝑘 ∈ (0..^𝑇)) → ∃𝑡(𝐵𝑘)𝑅(𝐵‘(𝑘 + 1)))
29 ax5e 1912 . . 3 (∃𝑡(𝐵𝑘)𝑅(𝐵‘(𝑘 + 1)) → (𝐵𝑘)𝑅(𝐵‘(𝑘 + 1)))
3028, 29syl 17 . 2 ((𝜑𝑘 ∈ (0..^𝑇)) → (𝐵𝑘)𝑅(𝐵‘(𝑘 + 1)))
3130ralrimiva 3126 1 (𝜑 → ∀𝑘 ∈ (0..^𝑇)(𝐵𝑘)𝑅(𝐵‘(𝑘 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3045   class class class wbr 5109   Or wor 5547  cfv 6513  (class class class)co 7389  0cc0 11074  1c1 11075   + caddc 11077   < clt 11214  cz 12535  ..^cfzo 13621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-n0 12449  df-z 12536  df-uz 12800  df-fz 13475  df-fzo 13622
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator