| Mathbox for Ender Ting |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ormklocald | Structured version Visualization version GIF version | ||
| Description: If elements of a certain sequence are ordered with respect to a certain relation, then its consecutive elements satisfy that relation (so-called "local monotonicity"). (Contributed by Ender Ting, 30-Apr-2025.) |
| Ref | Expression |
|---|---|
| ormklocald.1 | ⊢ (𝜑 → 𝑅 Or 𝑆) |
| ormklocald.2 | ⊢ (𝜑 → ∀𝑘 ∈ (0..^(𝑇 + 1))(𝐵‘𝑘) ∈ 𝑆) |
| ormklocald.3 | ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵‘𝑘)𝑅(𝐵‘𝑡))) |
| Ref | Expression |
|---|---|
| ormklocald | ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑇)(𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7446 | . . . . 5 ⊢ (𝑘 + 1) ∈ V | |
| 2 | 1 | isseti 3481 | . . . 4 ⊢ ∃𝑡 𝑡 = (𝑘 + 1) |
| 3 | elfzoelz 13681 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ) | |
| 4 | 3 | zred 12705 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℝ) |
| 5 | 4 | ltp1d 12180 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 < (𝑘 + 1)) |
| 6 | breq2 5127 | . . . . . . . . 9 ⊢ (𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 ↔ 𝑘 < (𝑘 + 1))) | |
| 7 | 5, 6 | syl5ibrcom 247 | . . . . . . . 8 ⊢ (𝑘 ∈ (0..^𝑇) → (𝑡 = (𝑘 + 1) → 𝑘 < 𝑡)) |
| 8 | 7 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → 𝑘 < 𝑡)) |
| 9 | 1z 12630 | . . . . . . . . . . . 12 ⊢ 1 ∈ ℤ | |
| 10 | fzoaddel 13738 | . . . . . . . . . . . 12 ⊢ ((𝑘 ∈ (0..^𝑇) ∧ 1 ∈ ℤ) → (𝑘 + 1) ∈ ((0 + 1)..^(𝑇 + 1))) | |
| 11 | 9, 10 | mpan2 691 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ∈ ((0 + 1)..^(𝑇 + 1))) |
| 12 | 0p1e1 12370 | . . . . . . . . . . . 12 ⊢ (0 + 1) = 1 | |
| 13 | 12 | oveq1i 7423 | . . . . . . . . . . 11 ⊢ ((0 + 1)..^(𝑇 + 1)) = (1..^(𝑇 + 1)) |
| 14 | 11, 13 | eleqtrdi 2843 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ∈ (1..^(𝑇 + 1))) |
| 15 | eleq1 2821 | . . . . . . . . . 10 ⊢ (𝑡 = (𝑘 + 1) → (𝑡 ∈ (1..^(𝑇 + 1)) ↔ (𝑘 + 1) ∈ (1..^(𝑇 + 1)))) | |
| 16 | 14, 15 | syl5ibrcom 247 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0..^𝑇) → (𝑡 = (𝑘 + 1) → 𝑡 ∈ (1..^(𝑇 + 1)))) |
| 17 | 16 | adantl 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → 𝑡 ∈ (1..^(𝑇 + 1)))) |
| 18 | ormklocald.3 | . . . . . . . . . . 11 ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵‘𝑘)𝑅(𝐵‘𝑡))) | |
| 19 | 18 | r19.21bi 3237 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → ∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵‘𝑘)𝑅(𝐵‘𝑡))) |
| 20 | 19 | r19.21bi 3237 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑘 < 𝑡 → (𝐵‘𝑘)𝑅(𝐵‘𝑡))) |
| 21 | 20 | ex 412 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝑡 ∈ (1..^(𝑇 + 1)) → (𝑘 < 𝑡 → (𝐵‘𝑘)𝑅(𝐵‘𝑡)))) |
| 22 | 17, 21 | syld 47 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵‘𝑘)𝑅(𝐵‘𝑡)))) |
| 23 | 8, 22 | mpdd 43 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → (𝐵‘𝑘)𝑅(𝐵‘𝑡))) |
| 24 | fveq2 6886 | . . . . . . 7 ⊢ (𝑡 = (𝑘 + 1) → (𝐵‘𝑡) = (𝐵‘(𝑘 + 1))) | |
| 25 | 24 | breq2d 5135 | . . . . . 6 ⊢ (𝑡 = (𝑘 + 1) → ((𝐵‘𝑘)𝑅(𝐵‘𝑡) ↔ (𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1)))) |
| 26 | 23, 25 | mpbidi 241 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → (𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1)))) |
| 27 | 26 | eximdv 1916 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (∃𝑡 𝑡 = (𝑘 + 1) → ∃𝑡(𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1)))) |
| 28 | 2, 27 | mpi 20 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → ∃𝑡(𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1))) |
| 29 | ax5e 1911 | . . 3 ⊢ (∃𝑡(𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1)) → (𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1))) | |
| 30 | 28, 29 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1))) |
| 31 | 30 | ralrimiva 3133 | 1 ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑇)(𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ∀wral 3050 class class class wbr 5123 Or wor 5571 ‘cfv 6541 (class class class)co 7413 0cc0 11137 1c1 11138 + caddc 11140 < clt 11277 ℤcz 12596 ..^cfzo 13676 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-n0 12510 df-z 12597 df-uz 12861 df-fz 13530 df-fzo 13677 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |