![]() |
Mathbox for Ender Ting |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ormklocald | Structured version Visualization version GIF version |
Description: If elements of a certain sequence are ordered with respect to a certain relation, then its consecutive elements satisfy that relation (so-called "local monotonicity"). (Contributed by Ender Ting, 30-Apr-2025.) |
Ref | Expression |
---|---|
ormklocald.1 | ⊢ (𝜑 → 𝑅 Or 𝑆) |
ormklocald.2 | ⊢ (𝜑 → ∀𝑘 ∈ (0..^(𝑇 + 1))(𝐵‘𝑘) ∈ 𝑆) |
ormklocald.3 | ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵‘𝑘)𝑅(𝐵‘𝑡))) |
Ref | Expression |
---|---|
ormklocald | ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑇)(𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7462 | . . . . 5 ⊢ (𝑘 + 1) ∈ V | |
2 | 1 | isseti 3497 | . . . 4 ⊢ ∃𝑡 𝑡 = (𝑘 + 1) |
3 | elfzoelz 13695 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ) | |
4 | 3 | zred 12718 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℝ) |
5 | 4 | ltp1d 12194 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 < (𝑘 + 1)) |
6 | breq2 5145 | . . . . . . . . 9 ⊢ (𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 ↔ 𝑘 < (𝑘 + 1))) | |
7 | 5, 6 | syl5ibrcom 247 | . . . . . . . 8 ⊢ (𝑘 ∈ (0..^𝑇) → (𝑡 = (𝑘 + 1) → 𝑘 < 𝑡)) |
8 | 7 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → 𝑘 < 𝑡)) |
9 | 1z 12643 | . . . . . . . . . . . 12 ⊢ 1 ∈ ℤ | |
10 | fzoaddel 13752 | . . . . . . . . . . . 12 ⊢ ((𝑘 ∈ (0..^𝑇) ∧ 1 ∈ ℤ) → (𝑘 + 1) ∈ ((0 + 1)..^(𝑇 + 1))) | |
11 | 9, 10 | mpan2 691 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ∈ ((0 + 1)..^(𝑇 + 1))) |
12 | 0p1e1 12384 | . . . . . . . . . . . 12 ⊢ (0 + 1) = 1 | |
13 | 12 | oveq1i 7439 | . . . . . . . . . . 11 ⊢ ((0 + 1)..^(𝑇 + 1)) = (1..^(𝑇 + 1)) |
14 | 11, 13 | eleqtrdi 2850 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ∈ (1..^(𝑇 + 1))) |
15 | eleq1 2828 | . . . . . . . . . 10 ⊢ (𝑡 = (𝑘 + 1) → (𝑡 ∈ (1..^(𝑇 + 1)) ↔ (𝑘 + 1) ∈ (1..^(𝑇 + 1)))) | |
16 | 14, 15 | syl5ibrcom 247 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0..^𝑇) → (𝑡 = (𝑘 + 1) → 𝑡 ∈ (1..^(𝑇 + 1)))) |
17 | 16 | adantl 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → 𝑡 ∈ (1..^(𝑇 + 1)))) |
18 | ormklocald.3 | . . . . . . . . . . 11 ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵‘𝑘)𝑅(𝐵‘𝑡))) | |
19 | 18 | r19.21bi 3250 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → ∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵‘𝑘)𝑅(𝐵‘𝑡))) |
20 | 19 | r19.21bi 3250 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑘 < 𝑡 → (𝐵‘𝑘)𝑅(𝐵‘𝑡))) |
21 | 20 | ex 412 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝑡 ∈ (1..^(𝑇 + 1)) → (𝑘 < 𝑡 → (𝐵‘𝑘)𝑅(𝐵‘𝑡)))) |
22 | 17, 21 | syld 47 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵‘𝑘)𝑅(𝐵‘𝑡)))) |
23 | 8, 22 | mpdd 43 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → (𝐵‘𝑘)𝑅(𝐵‘𝑡))) |
24 | fveq2 6904 | . . . . . . 7 ⊢ (𝑡 = (𝑘 + 1) → (𝐵‘𝑡) = (𝐵‘(𝑘 + 1))) | |
25 | 24 | breq2d 5153 | . . . . . 6 ⊢ (𝑡 = (𝑘 + 1) → ((𝐵‘𝑘)𝑅(𝐵‘𝑡) ↔ (𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1)))) |
26 | 23, 25 | mpbidi 241 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → (𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1)))) |
27 | 26 | eximdv 1917 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (∃𝑡 𝑡 = (𝑘 + 1) → ∃𝑡(𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1)))) |
28 | 2, 27 | mpi 20 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → ∃𝑡(𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1))) |
29 | ax5e 1912 | . . 3 ⊢ (∃𝑡(𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1)) → (𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1))) | |
30 | 28, 29 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1))) |
31 | 30 | ralrimiva 3145 | 1 ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑇)(𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∀wral 3060 class class class wbr 5141 Or wor 5589 ‘cfv 6559 (class class class)co 7429 0cc0 11151 1c1 11152 + caddc 11154 < clt 11291 ℤcz 12609 ..^cfzo 13690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-cnex 11207 ax-resscn 11208 ax-1cn 11209 ax-icn 11210 ax-addcl 11211 ax-addrcl 11212 ax-mulcl 11213 ax-mulrcl 11214 ax-mulcom 11215 ax-addass 11216 ax-mulass 11217 ax-distr 11218 ax-i2m1 11219 ax-1ne0 11220 ax-1rid 11221 ax-rnegex 11222 ax-rrecex 11223 ax-cnre 11224 ax-pre-lttri 11225 ax-pre-lttrn 11226 ax-pre-ltadd 11227 ax-pre-mulgt0 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-tr 5258 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6319 df-ord 6385 df-on 6386 df-lim 6387 df-suc 6388 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-riota 7386 df-ov 7432 df-oprab 7433 df-mpo 7434 df-om 7884 df-1st 8010 df-2nd 8011 df-frecs 8302 df-wrecs 8333 df-recs 8407 df-rdg 8446 df-er 8741 df-en 8982 df-dom 8983 df-sdom 8984 df-pnf 11293 df-mnf 11294 df-xr 11295 df-ltxr 11296 df-le 11297 df-sub 11490 df-neg 11491 df-nn 12263 df-n0 12523 df-z 12610 df-uz 12875 df-fz 13544 df-fzo 13691 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |