| Mathbox for Ender Ting |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ormklocald | Structured version Visualization version GIF version | ||
| Description: If elements of a certain sequence are ordered with respect to a certain relation, then its consecutive elements satisfy that relation (so-called "local monotonicity"). (Contributed by Ender Ting, 30-Apr-2025.) |
| Ref | Expression |
|---|---|
| ormklocald.1 | ⊢ (𝜑 → 𝑅 Or 𝑆) |
| ormklocald.2 | ⊢ (𝜑 → ∀𝑘 ∈ (0..^(𝑇 + 1))(𝐵‘𝑘) ∈ 𝑆) |
| ormklocald.3 | ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵‘𝑘)𝑅(𝐵‘𝑡))) |
| Ref | Expression |
|---|---|
| ormklocald | ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑇)(𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7374 | . . . . 5 ⊢ (𝑘 + 1) ∈ V | |
| 2 | 1 | isseti 3454 | . . . 4 ⊢ ∃𝑡 𝑡 = (𝑘 + 1) |
| 3 | elfzoelz 13554 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ) | |
| 4 | 3 | zred 12572 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℝ) |
| 5 | 4 | ltp1d 12047 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 < (𝑘 + 1)) |
| 6 | breq2 5090 | . . . . . . . . 9 ⊢ (𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 ↔ 𝑘 < (𝑘 + 1))) | |
| 7 | 5, 6 | syl5ibrcom 247 | . . . . . . . 8 ⊢ (𝑘 ∈ (0..^𝑇) → (𝑡 = (𝑘 + 1) → 𝑘 < 𝑡)) |
| 8 | 7 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → 𝑘 < 𝑡)) |
| 9 | 1z 12497 | . . . . . . . . . . . 12 ⊢ 1 ∈ ℤ | |
| 10 | fzoaddel 13612 | . . . . . . . . . . . 12 ⊢ ((𝑘 ∈ (0..^𝑇) ∧ 1 ∈ ℤ) → (𝑘 + 1) ∈ ((0 + 1)..^(𝑇 + 1))) | |
| 11 | 9, 10 | mpan2 691 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ∈ ((0 + 1)..^(𝑇 + 1))) |
| 12 | 0p1e1 12237 | . . . . . . . . . . . 12 ⊢ (0 + 1) = 1 | |
| 13 | 12 | oveq1i 7351 | . . . . . . . . . . 11 ⊢ ((0 + 1)..^(𝑇 + 1)) = (1..^(𝑇 + 1)) |
| 14 | 11, 13 | eleqtrdi 2841 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ∈ (1..^(𝑇 + 1))) |
| 15 | eleq1 2819 | . . . . . . . . . 10 ⊢ (𝑡 = (𝑘 + 1) → (𝑡 ∈ (1..^(𝑇 + 1)) ↔ (𝑘 + 1) ∈ (1..^(𝑇 + 1)))) | |
| 16 | 14, 15 | syl5ibrcom 247 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0..^𝑇) → (𝑡 = (𝑘 + 1) → 𝑡 ∈ (1..^(𝑇 + 1)))) |
| 17 | 16 | adantl 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → 𝑡 ∈ (1..^(𝑇 + 1)))) |
| 18 | ormklocald.3 | . . . . . . . . . . 11 ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵‘𝑘)𝑅(𝐵‘𝑡))) | |
| 19 | 18 | r19.21bi 3224 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → ∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵‘𝑘)𝑅(𝐵‘𝑡))) |
| 20 | 19 | r19.21bi 3224 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑘 < 𝑡 → (𝐵‘𝑘)𝑅(𝐵‘𝑡))) |
| 21 | 20 | ex 412 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝑡 ∈ (1..^(𝑇 + 1)) → (𝑘 < 𝑡 → (𝐵‘𝑘)𝑅(𝐵‘𝑡)))) |
| 22 | 17, 21 | syld 47 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵‘𝑘)𝑅(𝐵‘𝑡)))) |
| 23 | 8, 22 | mpdd 43 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → (𝐵‘𝑘)𝑅(𝐵‘𝑡))) |
| 24 | fveq2 6817 | . . . . . . 7 ⊢ (𝑡 = (𝑘 + 1) → (𝐵‘𝑡) = (𝐵‘(𝑘 + 1))) | |
| 25 | 24 | breq2d 5098 | . . . . . 6 ⊢ (𝑡 = (𝑘 + 1) → ((𝐵‘𝑘)𝑅(𝐵‘𝑡) ↔ (𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1)))) |
| 26 | 23, 25 | mpbidi 241 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → (𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1)))) |
| 27 | 26 | eximdv 1918 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (∃𝑡 𝑡 = (𝑘 + 1) → ∃𝑡(𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1)))) |
| 28 | 2, 27 | mpi 20 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → ∃𝑡(𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1))) |
| 29 | ax5e 1913 | . . 3 ⊢ (∃𝑡(𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1)) → (𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1))) | |
| 30 | 28, 29 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1))) |
| 31 | 30 | ralrimiva 3124 | 1 ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑇)(𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∀wral 3047 class class class wbr 5086 Or wor 5518 ‘cfv 6476 (class class class)co 7341 0cc0 11001 1c1 11002 + caddc 11004 < clt 11141 ℤcz 12463 ..^cfzo 13549 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-fzo 13550 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |