Users' Mathboxes Mathbox for Ender Ting < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ormklocald Structured version   Visualization version   GIF version

Theorem ormklocald 46912
Description: If elements of a certain sequence are ordered with respect to a certain relation, then its consecutive elements satisfy that relation (so-called "local monotonicity"). (Contributed by Ender Ting, 30-Apr-2025.)
Hypotheses
Ref Expression
ormklocald.1 (𝜑𝑅 Or 𝑆)
ormklocald.2 (𝜑 → ∀𝑘 ∈ (0..^(𝑇 + 1))(𝐵𝑘) ∈ 𝑆)
ormklocald.3 (𝜑 → ∀𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵𝑘)𝑅(𝐵𝑡)))
Assertion
Ref Expression
ormklocald (𝜑 → ∀𝑘 ∈ (0..^𝑇)(𝐵𝑘)𝑅(𝐵‘(𝑘 + 1)))
Distinct variable groups:   𝑡,𝐵   𝑡,𝑅   𝑡,𝑇   𝜑,𝑘,𝑡
Allowed substitution hints:   𝐵(𝑘)   𝑅(𝑘)   𝑆(𝑡,𝑘)   𝑇(𝑘)

Proof of Theorem ormklocald
StepHypRef Expression
1 ovex 7374 . . . . 5 (𝑘 + 1) ∈ V
21isseti 3454 . . . 4 𝑡 𝑡 = (𝑘 + 1)
3 elfzoelz 13554 . . . . . . . . . . 11 (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ)
43zred 12572 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℝ)
54ltp1d 12047 . . . . . . . . 9 (𝑘 ∈ (0..^𝑇) → 𝑘 < (𝑘 + 1))
6 breq2 5090 . . . . . . . . 9 (𝑡 = (𝑘 + 1) → (𝑘 < 𝑡𝑘 < (𝑘 + 1)))
75, 6syl5ibrcom 247 . . . . . . . 8 (𝑘 ∈ (0..^𝑇) → (𝑡 = (𝑘 + 1) → 𝑘 < 𝑡))
87adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → 𝑘 < 𝑡))
9 1z 12497 . . . . . . . . . . . 12 1 ∈ ℤ
10 fzoaddel 13612 . . . . . . . . . . . 12 ((𝑘 ∈ (0..^𝑇) ∧ 1 ∈ ℤ) → (𝑘 + 1) ∈ ((0 + 1)..^(𝑇 + 1)))
119, 10mpan2 691 . . . . . . . . . . 11 (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ∈ ((0 + 1)..^(𝑇 + 1)))
12 0p1e1 12237 . . . . . . . . . . . 12 (0 + 1) = 1
1312oveq1i 7351 . . . . . . . . . . 11 ((0 + 1)..^(𝑇 + 1)) = (1..^(𝑇 + 1))
1411, 13eleqtrdi 2841 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ∈ (1..^(𝑇 + 1)))
15 eleq1 2819 . . . . . . . . . 10 (𝑡 = (𝑘 + 1) → (𝑡 ∈ (1..^(𝑇 + 1)) ↔ (𝑘 + 1) ∈ (1..^(𝑇 + 1))))
1614, 15syl5ibrcom 247 . . . . . . . . 9 (𝑘 ∈ (0..^𝑇) → (𝑡 = (𝑘 + 1) → 𝑡 ∈ (1..^(𝑇 + 1))))
1716adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → 𝑡 ∈ (1..^(𝑇 + 1))))
18 ormklocald.3 . . . . . . . . . . 11 (𝜑 → ∀𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵𝑘)𝑅(𝐵𝑡)))
1918r19.21bi 3224 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0..^𝑇)) → ∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵𝑘)𝑅(𝐵𝑡)))
2019r19.21bi 3224 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑘 < 𝑡 → (𝐵𝑘)𝑅(𝐵𝑡)))
2120ex 412 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑇)) → (𝑡 ∈ (1..^(𝑇 + 1)) → (𝑘 < 𝑡 → (𝐵𝑘)𝑅(𝐵𝑡))))
2217, 21syld 47 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵𝑘)𝑅(𝐵𝑡))))
238, 22mpdd 43 . . . . . 6 ((𝜑𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → (𝐵𝑘)𝑅(𝐵𝑡)))
24 fveq2 6817 . . . . . . 7 (𝑡 = (𝑘 + 1) → (𝐵𝑡) = (𝐵‘(𝑘 + 1)))
2524breq2d 5098 . . . . . 6 (𝑡 = (𝑘 + 1) → ((𝐵𝑘)𝑅(𝐵𝑡) ↔ (𝐵𝑘)𝑅(𝐵‘(𝑘 + 1))))
2623, 25mpbidi 241 . . . . 5 ((𝜑𝑘 ∈ (0..^𝑇)) → (𝑡 = (𝑘 + 1) → (𝐵𝑘)𝑅(𝐵‘(𝑘 + 1))))
2726eximdv 1918 . . . 4 ((𝜑𝑘 ∈ (0..^𝑇)) → (∃𝑡 𝑡 = (𝑘 + 1) → ∃𝑡(𝐵𝑘)𝑅(𝐵‘(𝑘 + 1))))
282, 27mpi 20 . . 3 ((𝜑𝑘 ∈ (0..^𝑇)) → ∃𝑡(𝐵𝑘)𝑅(𝐵‘(𝑘 + 1)))
29 ax5e 1913 . . 3 (∃𝑡(𝐵𝑘)𝑅(𝐵‘(𝑘 + 1)) → (𝐵𝑘)𝑅(𝐵‘(𝑘 + 1)))
3028, 29syl 17 . 2 ((𝜑𝑘 ∈ (0..^𝑇)) → (𝐵𝑘)𝑅(𝐵‘(𝑘 + 1)))
3130ralrimiva 3124 1 (𝜑 → ∀𝑘 ∈ (0..^𝑇)(𝐵𝑘)𝑅(𝐵‘(𝑘 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2111  wral 3047   class class class wbr 5086   Or wor 5518  cfv 6476  (class class class)co 7341  0cc0 11001  1c1 11002   + caddc 11004   < clt 11141  cz 12463  ..^cfzo 13549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-n0 12377  df-z 12464  df-uz 12728  df-fz 13403  df-fzo 13550
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator