Users' Mathboxes Mathbox for Ender Ting < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ormkglobd Structured version   Visualization version   GIF version

Theorem ormkglobd 46862
Description: If all adjacent elements of a certain sequence are ordered according to a relation which is a total order on S, then any element is so related to anything to right of it (so-called "global monotonicity"). Deduction form. (Contributed by Ender Ting, 30-Apr-2025.)
Hypotheses
Ref Expression
ormkglobd.1 (𝜑𝑅 Or 𝑆)
ormkglobd.2 (𝜑 → ∀𝑘 ∈ (0..^(𝑇 + 1))(𝐵𝑘) ∈ 𝑆)
ormkglobd.3 (𝜑 → ∀𝑘 ∈ (0..^𝑇)(𝐵𝑘)𝑅(𝐵‘(𝑘 + 1)))
Assertion
Ref Expression
ormkglobd (𝜑 → ∀𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵𝑘)𝑅(𝐵𝑡)))
Distinct variable groups:   𝐵,𝑘   𝑅,𝑘   𝑆,𝑘   𝑇,𝑘,𝑡   𝜑,𝑘,𝑡
Allowed substitution hints:   𝐵(𝑡)   𝑅(𝑡)   𝑆(𝑡)

Proof of Theorem ormkglobd
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2a1 28 . . . . . . 7 (𝜑 → ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑘 < 𝑡𝜑)))
21imp 406 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1)))) → (𝑘 < 𝑡𝜑))
3 2a1 28 . . . . . . . 8 (𝑘 ∈ (0..^𝑇) → (𝑡 ∈ (1..^(𝑇 + 1)) → (𝑘 < 𝑡𝑘 ∈ (0..^𝑇))))
43imp 406 . . . . . . 7 ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑘 < 𝑡𝑘 ∈ (0..^𝑇)))
54adantl 481 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1)))) → (𝑘 < 𝑡𝑘 ∈ (0..^𝑇)))
62, 5jcad 512 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1)))) → (𝑘 < 𝑡 → (𝜑𝑘 ∈ (0..^𝑇))))
7 elfzoelz 13681 . . . . . . . . 9 (𝑡 ∈ (1..^(𝑇 + 1)) → 𝑡 ∈ ℤ)
87adantl 481 . . . . . . . 8 ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → 𝑡 ∈ ℤ)
98a1d 25 . . . . . . 7 ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑘 < 𝑡𝑡 ∈ ℤ))
10 elfzoelz 13681 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ)
1110adantr 480 . . . . . . . . 9 ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → 𝑘 ∈ ℤ)
12 elfzoelz 13681 . . . . . . . . . 10 (𝑡 ∈ (1..^(𝑇 + 1)) → 𝑡 ∈ ℤ)
1312adantl 481 . . . . . . . . 9 ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → 𝑡 ∈ ℤ)
14 zltp1le 12650 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 𝑡 ∈ ℤ) → (𝑘 < 𝑡 ↔ (𝑘 + 1) ≤ 𝑡))
1511, 13, 14syl2anc 584 . . . . . . . 8 ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑘 < 𝑡 ↔ (𝑘 + 1) ≤ 𝑡))
1615biimpd 229 . . . . . . 7 ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑘 < 𝑡 → (𝑘 + 1) ≤ 𝑡))
17 elfzoelz 13681 . . . . . . . . . . . 12 (𝑡 ∈ (1..^(𝑇 + 1)) → 𝑡 ∈ ℤ)
1817adantl 481 . . . . . . . . . . 11 ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → 𝑡 ∈ ℤ)
1918zred 12705 . . . . . . . . . 10 ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → 𝑡 ∈ ℝ)
20 elfzoel2 13680 . . . . . . . . . . . 12 (𝑘 ∈ (0..^𝑇) → 𝑇 ∈ ℤ)
2120adantr 480 . . . . . . . . . . 11 ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → 𝑇 ∈ ℤ)
2221zred 12705 . . . . . . . . . 10 ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → 𝑇 ∈ ℝ)
23 1red 11244 . . . . . . . . . 10 ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → 1 ∈ ℝ)
2419, 22, 233jca 1128 . . . . . . . . 9 ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑡 ∈ ℝ ∧ 𝑇 ∈ ℝ ∧ 1 ∈ ℝ))
25 elfzop1le2 13694 . . . . . . . . . 10 (𝑡 ∈ (1..^(𝑇 + 1)) → (𝑡 + 1) ≤ (𝑇 + 1))
2625adantl 481 . . . . . . . . 9 ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑡 + 1) ≤ (𝑇 + 1))
27 leadd1 11713 . . . . . . . . . 10 ((𝑡 ∈ ℝ ∧ 𝑇 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑡𝑇 ↔ (𝑡 + 1) ≤ (𝑇 + 1)))
2827biimprd 248 . . . . . . . . 9 ((𝑡 ∈ ℝ ∧ 𝑇 ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑡 + 1) ≤ (𝑇 + 1) → 𝑡𝑇))
2924, 26, 28sylc 65 . . . . . . . 8 ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → 𝑡𝑇)
3029a1d 25 . . . . . . 7 ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑘 < 𝑡𝑡𝑇))
319, 16, 303jcad 1129 . . . . . 6 ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑘 < 𝑡 → (𝑡 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑡𝑡𝑇)))
3231adantl 481 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1)))) → (𝑘 < 𝑡 → (𝑡 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑡𝑡𝑇)))
336, 32jcad 512 . . . 4 ((𝜑 ∧ (𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1)))) → (𝑘 < 𝑡 → ((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑡 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑡𝑡𝑇))))
3433ex 412 . . 3 (𝜑 → ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑘 < 𝑡 → ((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑡 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑡𝑡𝑇)))))
35 fveq2 6886 . . . . 5 (𝑎 = (𝑘 + 1) → (𝐵𝑎) = (𝐵‘(𝑘 + 1)))
3635breq2d 5135 . . . 4 (𝑎 = (𝑘 + 1) → ((𝐵𝑘)𝑅(𝐵𝑎) ↔ (𝐵𝑘)𝑅(𝐵‘(𝑘 + 1))))
37 fveq2 6886 . . . . 5 (𝑎 = 𝑏 → (𝐵𝑎) = (𝐵𝑏))
3837breq2d 5135 . . . 4 (𝑎 = 𝑏 → ((𝐵𝑘)𝑅(𝐵𝑎) ↔ (𝐵𝑘)𝑅(𝐵𝑏)))
39 fveq2 6886 . . . . 5 (𝑎 = (𝑏 + 1) → (𝐵𝑎) = (𝐵‘(𝑏 + 1)))
4039breq2d 5135 . . . 4 (𝑎 = (𝑏 + 1) → ((𝐵𝑘)𝑅(𝐵𝑎) ↔ (𝐵𝑘)𝑅(𝐵‘(𝑏 + 1))))
41 fveq2 6886 . . . . 5 (𝑎 = 𝑡 → (𝐵𝑎) = (𝐵𝑡))
4241breq2d 5135 . . . 4 (𝑎 = 𝑡 → ((𝐵𝑘)𝑅(𝐵𝑎) ↔ (𝐵𝑘)𝑅(𝐵𝑡)))
43 ormkglobd.3 . . . . 5 (𝜑 → ∀𝑘 ∈ (0..^𝑇)(𝐵𝑘)𝑅(𝐵‘(𝑘 + 1)))
4443r19.21bi 3237 . . . 4 ((𝜑𝑘 ∈ (0..^𝑇)) → (𝐵𝑘)𝑅(𝐵‘(𝑘 + 1)))
45 simp1l 1197 . . . . . 6 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝜑)
46 ormkglobd.1 . . . . . 6 (𝜑𝑅 Or 𝑆)
4745, 46syl 17 . . . . 5 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑅 Or 𝑆)
48 elfzofz 13697 . . . . . . . 8 (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ (0...𝑇))
49 elfzoel2 13680 . . . . . . . . 9 (𝑘 ∈ (0..^𝑇) → 𝑇 ∈ ℤ)
50 fzval3 13755 . . . . . . . . 9 (𝑇 ∈ ℤ → (0...𝑇) = (0..^(𝑇 + 1)))
5149, 50syl 17 . . . . . . . 8 (𝑘 ∈ (0..^𝑇) → (0...𝑇) = (0..^(𝑇 + 1)))
5248, 51eleqtrd 2835 . . . . . . 7 (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ (0..^(𝑇 + 1)))
53 ormkglobd.2 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ (0..^(𝑇 + 1))(𝐵𝑘) ∈ 𝑆)
5453r19.21bi 3237 . . . . . . 7 ((𝜑𝑘 ∈ (0..^(𝑇 + 1))) → (𝐵𝑘) ∈ 𝑆)
5552, 54sylan2 593 . . . . . 6 ((𝜑𝑘 ∈ (0..^𝑇)) → (𝐵𝑘) ∈ 𝑆)
56553ad2ant1 1133 . . . . 5 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → (𝐵𝑘) ∈ 𝑆)
57 simp1l 1197 . . . . . 6 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝜑)
58 simp21 1206 . . . . . . . 8 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑏 ∈ ℤ)
59 0red 11246 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 0 ∈ ℝ)
60 simp1r 1198 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑘 ∈ (0..^𝑇))
61 elfzoelz 13681 . . . . . . . . . . . 12 (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ)
6260, 61syl 17 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑘 ∈ ℤ)
6362zred 12705 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑘 ∈ ℝ)
64 1red 11244 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 1 ∈ ℝ)
6563, 64readdcld 11272 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → (𝑘 + 1) ∈ ℝ)
66 simp21 1206 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑏 ∈ ℤ)
6766zred 12705 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑏 ∈ ℝ)
68 simp1r 1198 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑘 ∈ (0..^𝑇))
69 elfzoelz 13681 . . . . . . . . . . . 12 (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ)
7068, 69syl 17 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑘 ∈ ℤ)
7170zred 12705 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑘 ∈ ℝ)
72 1red 11244 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 1 ∈ ℝ)
73 simp1r 1198 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑘 ∈ (0..^𝑇))
74 elfzole1 13689 . . . . . . . . . . 11 (𝑘 ∈ (0..^𝑇) → 0 ≤ 𝑘)
7573, 74syl 17 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 0 ≤ 𝑘)
76 0le1 11768 . . . . . . . . . . 11 0 ≤ 1
7776a1i 11 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 0 ≤ 1)
7871, 72, 75, 77addge0d 11821 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 0 ≤ (𝑘 + 1))
79 simp22 1207 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → (𝑘 + 1) ≤ 𝑏)
8059, 65, 67, 78, 79letrd 11400 . . . . . . . 8 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 0 ≤ 𝑏)
81 elnn0z 12609 . . . . . . . 8 (𝑏 ∈ ℕ0 ↔ (𝑏 ∈ ℤ ∧ 0 ≤ 𝑏))
8258, 80, 81sylanbrc 583 . . . . . . 7 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑏 ∈ ℕ0)
83 simp1r 1198 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑘 ∈ (0..^𝑇))
84 elfzoel2 13680 . . . . . . . . 9 (𝑘 ∈ (0..^𝑇) → 𝑇 ∈ ℤ)
8583, 84syl 17 . . . . . . . 8 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑇 ∈ ℤ)
8685peano2zd 12708 . . . . . . 7 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → (𝑇 + 1) ∈ ℤ)
87 simp21 1206 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑏 ∈ ℤ)
8887zred 12705 . . . . . . . 8 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑏 ∈ ℝ)
89 simp1r 1198 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑘 ∈ (0..^𝑇))
90 elfzoel2 13680 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑇) → 𝑇 ∈ ℤ)
9189, 90syl 17 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑇 ∈ ℤ)
9291zred 12705 . . . . . . . 8 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑇 ∈ ℝ)
93 simp1r 1198 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑘 ∈ (0..^𝑇))
94 elfzoel2 13680 . . . . . . . . . . 11 (𝑘 ∈ (0..^𝑇) → 𝑇 ∈ ℤ)
9593, 94syl 17 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑇 ∈ ℤ)
9695zred 12705 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑇 ∈ ℝ)
97 1red 11244 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 1 ∈ ℝ)
9896, 97readdcld 11272 . . . . . . . 8 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → (𝑇 + 1) ∈ ℝ)
99 simp23 1208 . . . . . . . 8 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑏 < 𝑇)
100 simp1r 1198 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑘 ∈ (0..^𝑇))
101 elfzoel2 13680 . . . . . . . . . . 11 (𝑘 ∈ (0..^𝑇) → 𝑇 ∈ ℤ)
102100, 101syl 17 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑇 ∈ ℤ)
103102zred 12705 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑇 ∈ ℝ)
104103ltp1d 12180 . . . . . . . 8 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑇 < (𝑇 + 1))
10588, 92, 98, 99, 104lttrd 11404 . . . . . . 7 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑏 < (𝑇 + 1))
106 elfzo0z 13723 . . . . . . 7 (𝑏 ∈ (0..^(𝑇 + 1)) ↔ (𝑏 ∈ ℕ0 ∧ (𝑇 + 1) ∈ ℤ ∧ 𝑏 < (𝑇 + 1)))
10782, 86, 105, 106syl3anbrc 1343 . . . . . 6 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑏 ∈ (0..^(𝑇 + 1)))
108 eleq1w 2816 . . . . . . . . 9 (𝑘 = 𝑏 → (𝑘 ∈ (0..^(𝑇 + 1)) ↔ 𝑏 ∈ (0..^(𝑇 + 1))))
109108anbi2d 630 . . . . . . . 8 (𝑘 = 𝑏 → ((𝜑𝑘 ∈ (0..^(𝑇 + 1))) ↔ (𝜑𝑏 ∈ (0..^(𝑇 + 1)))))
11053r19.21bi 3237 . . . . . . . . 9 ((𝜑𝑘 ∈ (0..^(𝑇 + 1))) → (𝐵𝑘) ∈ 𝑆)
111 fveq2 6886 . . . . . . . . . 10 (𝑘 = 𝑏 → (𝐵𝑘) = (𝐵𝑏))
112111eleq1d 2818 . . . . . . . . 9 (𝑘 = 𝑏 → ((𝐵𝑘) ∈ 𝑆 ↔ (𝐵𝑏) ∈ 𝑆))
113110, 112imbitrid 244 . . . . . . . 8 (𝑘 = 𝑏 → ((𝜑𝑘 ∈ (0..^(𝑇 + 1))) → (𝐵𝑏) ∈ 𝑆))
114109, 113sylbird 260 . . . . . . 7 (𝑘 = 𝑏 → ((𝜑𝑏 ∈ (0..^(𝑇 + 1))) → (𝐵𝑏) ∈ 𝑆))
115 ax6ev 1968 . . . . . . 7 𝑘 𝑘 = 𝑏
116114, 115exlimiiv 1930 . . . . . 6 ((𝜑𝑏 ∈ (0..^(𝑇 + 1))) → (𝐵𝑏) ∈ 𝑆)
11757, 107, 116syl2anc 584 . . . . 5 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → (𝐵𝑏) ∈ 𝑆)
118 simp1l 1197 . . . . . 6 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝜑)
119 simp21 1206 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑏 ∈ ℤ)
120 0red 11246 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 0 ∈ ℝ)
121 simp1r 1198 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑘 ∈ (0..^𝑇))
122 elfzoelz 13681 . . . . . . . . . . . . 13 (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ)
123121, 122syl 17 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑘 ∈ ℤ)
124123zred 12705 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑘 ∈ ℝ)
125 1red 11244 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 1 ∈ ℝ)
126124, 125readdcld 11272 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → (𝑘 + 1) ∈ ℝ)
127 simp21 1206 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑏 ∈ ℤ)
128127zred 12705 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑏 ∈ ℝ)
129 simp1r 1198 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑘 ∈ (0..^𝑇))
130 elfzoelz 13681 . . . . . . . . . . . . 13 (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ)
131129, 130syl 17 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑘 ∈ ℤ)
132131zred 12705 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑘 ∈ ℝ)
133 1red 11244 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 1 ∈ ℝ)
134 simp1r 1198 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑘 ∈ (0..^𝑇))
135 elfzole1 13689 . . . . . . . . . . . 12 (𝑘 ∈ (0..^𝑇) → 0 ≤ 𝑘)
136134, 135syl 17 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 0 ≤ 𝑘)
13776a1i 11 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 0 ≤ 1)
138132, 133, 136, 137addge0d 11821 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 0 ≤ (𝑘 + 1))
139 simp22 1207 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → (𝑘 + 1) ≤ 𝑏)
140120, 126, 128, 138, 139letrd 11400 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 0 ≤ 𝑏)
141 elnn0z 12609 . . . . . . . . 9 (𝑏 ∈ ℕ0 ↔ (𝑏 ∈ ℤ ∧ 0 ≤ 𝑏))
142119, 140, 141sylanbrc 583 . . . . . . . 8 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑏 ∈ ℕ0)
143 1nn0 12525 . . . . . . . . 9 1 ∈ ℕ0
144143a1i 11 . . . . . . . 8 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 1 ∈ ℕ0)
145142, 144nn0addcld 12574 . . . . . . 7 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → (𝑏 + 1) ∈ ℕ0)
146 simp1r 1198 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑘 ∈ (0..^𝑇))
147 elfzoel2 13680 . . . . . . . . 9 (𝑘 ∈ (0..^𝑇) → 𝑇 ∈ ℤ)
148146, 147syl 17 . . . . . . . 8 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑇 ∈ ℤ)
149148peano2zd 12708 . . . . . . 7 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → (𝑇 + 1) ∈ ℤ)
150 simp21 1206 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑏 ∈ ℤ)
151150zred 12705 . . . . . . . 8 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑏 ∈ ℝ)
152 simp1r 1198 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑘 ∈ (0..^𝑇))
153 elfzoel2 13680 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑇) → 𝑇 ∈ ℤ)
154152, 153syl 17 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑇 ∈ ℤ)
155154zred 12705 . . . . . . . 8 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑇 ∈ ℝ)
156 1red 11244 . . . . . . . 8 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 1 ∈ ℝ)
157 simp23 1208 . . . . . . . 8 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑏 < 𝑇)
158151, 155, 156, 157ltadd1dd 11856 . . . . . . 7 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → (𝑏 + 1) < (𝑇 + 1))
159 elfzo0z 13723 . . . . . . 7 ((𝑏 + 1) ∈ (0..^(𝑇 + 1)) ↔ ((𝑏 + 1) ∈ ℕ0 ∧ (𝑇 + 1) ∈ ℤ ∧ (𝑏 + 1) < (𝑇 + 1)))
160145, 149, 158, 159syl3anbrc 1343 . . . . . 6 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → (𝑏 + 1) ∈ (0..^(𝑇 + 1)))
161 ovex 7446 . . . . . . 7 (𝑏 + 1) ∈ V
162 eleq1 2821 . . . . . . . . 9 (𝑘 = (𝑏 + 1) → (𝑘 ∈ (0..^(𝑇 + 1)) ↔ (𝑏 + 1) ∈ (0..^(𝑇 + 1))))
163162anbi2d 630 . . . . . . . 8 (𝑘 = (𝑏 + 1) → ((𝜑𝑘 ∈ (0..^(𝑇 + 1))) ↔ (𝜑 ∧ (𝑏 + 1) ∈ (0..^(𝑇 + 1)))))
16453r19.21bi 3237 . . . . . . . . 9 ((𝜑𝑘 ∈ (0..^(𝑇 + 1))) → (𝐵𝑘) ∈ 𝑆)
165 fveq2 6886 . . . . . . . . . 10 (𝑘 = (𝑏 + 1) → (𝐵𝑘) = (𝐵‘(𝑏 + 1)))
166165eleq1d 2818 . . . . . . . . 9 (𝑘 = (𝑏 + 1) → ((𝐵𝑘) ∈ 𝑆 ↔ (𝐵‘(𝑏 + 1)) ∈ 𝑆))
167164, 166imbitrid 244 . . . . . . . 8 (𝑘 = (𝑏 + 1) → ((𝜑𝑘 ∈ (0..^(𝑇 + 1))) → (𝐵‘(𝑏 + 1)) ∈ 𝑆))
168163, 167sylbird 260 . . . . . . 7 (𝑘 = (𝑏 + 1) → ((𝜑 ∧ (𝑏 + 1) ∈ (0..^(𝑇 + 1))) → (𝐵‘(𝑏 + 1)) ∈ 𝑆))
169161, 168vtocle 3538 . . . . . 6 ((𝜑 ∧ (𝑏 + 1) ∈ (0..^(𝑇 + 1))) → (𝐵‘(𝑏 + 1)) ∈ 𝑆)
170118, 160, 169syl2anc 584 . . . . 5 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → (𝐵‘(𝑏 + 1)) ∈ 𝑆)
171 simp3 1138 . . . . 5 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → (𝐵𝑘)𝑅(𝐵𝑏))
172 simp1l 1197 . . . . . 6 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝜑)
173 simp21 1206 . . . . . . . 8 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑏 ∈ ℤ)
174 0red 11246 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 0 ∈ ℝ)
175 simp1r 1198 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑘 ∈ (0..^𝑇))
176 elfzoelz 13681 . . . . . . . . . . . 12 (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ)
177175, 176syl 17 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑘 ∈ ℤ)
178177zred 12705 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑘 ∈ ℝ)
179 1red 11244 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 1 ∈ ℝ)
180178, 179readdcld 11272 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → (𝑘 + 1) ∈ ℝ)
181 simp21 1206 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑏 ∈ ℤ)
182181zred 12705 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑏 ∈ ℝ)
183 simp1r 1198 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑘 ∈ (0..^𝑇))
184 elfzoelz 13681 . . . . . . . . . . . 12 (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ)
185183, 184syl 17 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑘 ∈ ℤ)
186185zred 12705 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑘 ∈ ℝ)
187 1red 11244 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 1 ∈ ℝ)
188 simp1r 1198 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑘 ∈ (0..^𝑇))
189 elfzole1 13689 . . . . . . . . . . 11 (𝑘 ∈ (0..^𝑇) → 0 ≤ 𝑘)
190188, 189syl 17 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 0 ≤ 𝑘)
19176a1i 11 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 0 ≤ 1)
192186, 187, 190, 191addge0d 11821 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 0 ≤ (𝑘 + 1))
193 simp22 1207 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → (𝑘 + 1) ≤ 𝑏)
194174, 180, 182, 192, 193letrd 11400 . . . . . . . 8 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 0 ≤ 𝑏)
195 elnn0z 12609 . . . . . . . 8 (𝑏 ∈ ℕ0 ↔ (𝑏 ∈ ℤ ∧ 0 ≤ 𝑏))
196173, 194, 195sylanbrc 583 . . . . . . 7 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑏 ∈ ℕ0)
197 simp1r 1198 . . . . . . . 8 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑘 ∈ (0..^𝑇))
198 elfzoel2 13680 . . . . . . . 8 (𝑘 ∈ (0..^𝑇) → 𝑇 ∈ ℤ)
199197, 198syl 17 . . . . . . 7 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑇 ∈ ℤ)
200 simp23 1208 . . . . . . 7 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑏 < 𝑇)
201 elfzo0z 13723 . . . . . . 7 (𝑏 ∈ (0..^𝑇) ↔ (𝑏 ∈ ℕ0𝑇 ∈ ℤ ∧ 𝑏 < 𝑇))
202196, 199, 200, 201syl3anbrc 1343 . . . . . 6 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → 𝑏 ∈ (0..^𝑇))
203 eleq1w 2816 . . . . . . . . 9 (𝑏 = 𝑘 → (𝑏 ∈ (0..^𝑇) ↔ 𝑘 ∈ (0..^𝑇)))
204203anbi2d 630 . . . . . . . 8 (𝑏 = 𝑘 → ((𝜑𝑏 ∈ (0..^𝑇)) ↔ (𝜑𝑘 ∈ (0..^𝑇))))
20543r19.21bi 3237 . . . . . . . . 9 ((𝜑𝑘 ∈ (0..^𝑇)) → (𝐵𝑘)𝑅(𝐵‘(𝑘 + 1)))
206 fveq2 6886 . . . . . . . . . 10 (𝑏 = 𝑘 → (𝐵𝑏) = (𝐵𝑘))
207 fvoveq1 7436 . . . . . . . . . 10 (𝑏 = 𝑘 → (𝐵‘(𝑏 + 1)) = (𝐵‘(𝑘 + 1)))
208206, 207breq12d 5136 . . . . . . . . 9 (𝑏 = 𝑘 → ((𝐵𝑏)𝑅(𝐵‘(𝑏 + 1)) ↔ (𝐵𝑘)𝑅(𝐵‘(𝑘 + 1))))
209205, 208imbitrrid 246 . . . . . . . 8 (𝑏 = 𝑘 → ((𝜑𝑘 ∈ (0..^𝑇)) → (𝐵𝑏)𝑅(𝐵‘(𝑏 + 1))))
210204, 209sylbid 240 . . . . . . 7 (𝑏 = 𝑘 → ((𝜑𝑏 ∈ (0..^𝑇)) → (𝐵𝑏)𝑅(𝐵‘(𝑏 + 1))))
211 ax6evr 2013 . . . . . . 7 𝑘 𝑏 = 𝑘
212210, 211exlimiiv 1930 . . . . . 6 ((𝜑𝑏 ∈ (0..^𝑇)) → (𝐵𝑏)𝑅(𝐵‘(𝑏 + 1)))
213172, 202, 212syl2anc 584 . . . . 5 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → (𝐵𝑏)𝑅(𝐵‘(𝑏 + 1)))
21447, 56, 117, 170, 171, 213sotrd 5598 . . . 4 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘)𝑅(𝐵𝑏)) → (𝐵𝑘)𝑅(𝐵‘(𝑏 + 1)))
215 elfzoelz 13681 . . . . . 6 (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ)
216215adantl 481 . . . . 5 ((𝜑𝑘 ∈ (0..^𝑇)) → 𝑘 ∈ ℤ)
217216peano2zd 12708 . . . 4 ((𝜑𝑘 ∈ (0..^𝑇)) → (𝑘 + 1) ∈ ℤ)
218 elfzoel2 13680 . . . . 5 (𝑘 ∈ (0..^𝑇) → 𝑇 ∈ ℤ)
219218adantl 481 . . . 4 ((𝜑𝑘 ∈ (0..^𝑇)) → 𝑇 ∈ ℤ)
220 elfzop1le2 13694 . . . . 5 (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ≤ 𝑇)
221220adantl 481 . . . 4 ((𝜑𝑘 ∈ (0..^𝑇)) → (𝑘 + 1) ≤ 𝑇)
22236, 38, 40, 42, 44, 214, 217, 219, 221fzindd 12703 . . 3 (((𝜑𝑘 ∈ (0..^𝑇)) ∧ (𝑡 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑡𝑡𝑇)) → (𝐵𝑘)𝑅(𝐵𝑡))
22334, 222syl8 76 . 2 (𝜑 → ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑘 < 𝑡 → (𝐵𝑘)𝑅(𝐵𝑡))))
224223ralrimivv 3187 1 (𝜑 → ∀𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵𝑘)𝑅(𝐵𝑡)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3050   class class class wbr 5123   Or wor 5571  cfv 6541  (class class class)co 7413  cr 11136  0cc0 11137  1c1 11138   + caddc 11140   < clt 11277  cle 11278  0cn0 12509  cz 12596  ...cfz 13529  ..^cfzo 13676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-n0 12510  df-z 12597  df-uz 12861  df-fz 13530  df-fzo 13677
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator