| Step | Hyp | Ref
| Expression |
| 1 | | 2a1 28 |
. . . . . . 7
⊢ (𝜑 → ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑘 < 𝑡 → 𝜑))) |
| 2 | 1 | imp 406 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1)))) → (𝑘 < 𝑡 → 𝜑)) |
| 3 | | 2a1 28 |
. . . . . . . 8
⊢ (𝑘 ∈ (0..^𝑇) → (𝑡 ∈ (1..^(𝑇 + 1)) → (𝑘 < 𝑡 → 𝑘 ∈ (0..^𝑇)))) |
| 4 | 3 | imp 406 |
. . . . . . 7
⊢ ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑘 < 𝑡 → 𝑘 ∈ (0..^𝑇))) |
| 5 | 4 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1)))) → (𝑘 < 𝑡 → 𝑘 ∈ (0..^𝑇))) |
| 6 | 2, 5 | jcad 512 |
. . . . 5
⊢ ((𝜑 ∧ (𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1)))) → (𝑘 < 𝑡 → (𝜑 ∧ 𝑘 ∈ (0..^𝑇)))) |
| 7 | | elfzoelz 13681 |
. . . . . . . . 9
⊢ (𝑡 ∈ (1..^(𝑇 + 1)) → 𝑡 ∈ ℤ) |
| 8 | 7 | adantl 481 |
. . . . . . . 8
⊢ ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → 𝑡 ∈ ℤ) |
| 9 | 8 | a1d 25 |
. . . . . . 7
⊢ ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑘 < 𝑡 → 𝑡 ∈ ℤ)) |
| 10 | | elfzoelz 13681 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ) |
| 11 | 10 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → 𝑘 ∈ ℤ) |
| 12 | | elfzoelz 13681 |
. . . . . . . . . 10
⊢ (𝑡 ∈ (1..^(𝑇 + 1)) → 𝑡 ∈ ℤ) |
| 13 | 12 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → 𝑡 ∈ ℤ) |
| 14 | | zltp1le 12650 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℤ ∧ 𝑡 ∈ ℤ) → (𝑘 < 𝑡 ↔ (𝑘 + 1) ≤ 𝑡)) |
| 15 | 11, 13, 14 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑘 < 𝑡 ↔ (𝑘 + 1) ≤ 𝑡)) |
| 16 | 15 | biimpd 229 |
. . . . . . 7
⊢ ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑘 < 𝑡 → (𝑘 + 1) ≤ 𝑡)) |
| 17 | | elfzoelz 13681 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ (1..^(𝑇 + 1)) → 𝑡 ∈ ℤ) |
| 18 | 17 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → 𝑡 ∈ ℤ) |
| 19 | 18 | zred 12705 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → 𝑡 ∈ ℝ) |
| 20 | | elfzoel2 13680 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0..^𝑇) → 𝑇 ∈ ℤ) |
| 21 | 20 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → 𝑇 ∈ ℤ) |
| 22 | 21 | zred 12705 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → 𝑇 ∈ ℝ) |
| 23 | | 1red 11244 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → 1 ∈
ℝ) |
| 24 | 19, 22, 23 | 3jca 1128 |
. . . . . . . . 9
⊢ ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑡 ∈ ℝ ∧ 𝑇 ∈ ℝ ∧ 1 ∈
ℝ)) |
| 25 | | elfzop1le2 13694 |
. . . . . . . . . 10
⊢ (𝑡 ∈ (1..^(𝑇 + 1)) → (𝑡 + 1) ≤ (𝑇 + 1)) |
| 26 | 25 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑡 + 1) ≤ (𝑇 + 1)) |
| 27 | | leadd1 11713 |
. . . . . . . . . 10
⊢ ((𝑡 ∈ ℝ ∧ 𝑇 ∈ ℝ ∧ 1 ∈
ℝ) → (𝑡 ≤
𝑇 ↔ (𝑡 + 1) ≤ (𝑇 + 1))) |
| 28 | 27 | biimprd 248 |
. . . . . . . . 9
⊢ ((𝑡 ∈ ℝ ∧ 𝑇 ∈ ℝ ∧ 1 ∈
ℝ) → ((𝑡 + 1)
≤ (𝑇 + 1) → 𝑡 ≤ 𝑇)) |
| 29 | 24, 26, 28 | sylc 65 |
. . . . . . . 8
⊢ ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → 𝑡 ≤ 𝑇) |
| 30 | 29 | a1d 25 |
. . . . . . 7
⊢ ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑘 < 𝑡 → 𝑡 ≤ 𝑇)) |
| 31 | 9, 16, 30 | 3jcad 1129 |
. . . . . 6
⊢ ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑘 < 𝑡 → (𝑡 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑡 ∧ 𝑡 ≤ 𝑇))) |
| 32 | 31 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1)))) → (𝑘 < 𝑡 → (𝑡 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑡 ∧ 𝑡 ≤ 𝑇))) |
| 33 | 6, 32 | jcad 512 |
. . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1)))) → (𝑘 < 𝑡 → ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑡 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑡 ∧ 𝑡 ≤ 𝑇)))) |
| 34 | 33 | ex 412 |
. . 3
⊢ (𝜑 → ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑘 < 𝑡 → ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑡 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑡 ∧ 𝑡 ≤ 𝑇))))) |
| 35 | | fveq2 6886 |
. . . . 5
⊢ (𝑎 = (𝑘 + 1) → (𝐵‘𝑎) = (𝐵‘(𝑘 + 1))) |
| 36 | 35 | breq2d 5135 |
. . . 4
⊢ (𝑎 = (𝑘 + 1) → ((𝐵‘𝑘)𝑅(𝐵‘𝑎) ↔ (𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1)))) |
| 37 | | fveq2 6886 |
. . . . 5
⊢ (𝑎 = 𝑏 → (𝐵‘𝑎) = (𝐵‘𝑏)) |
| 38 | 37 | breq2d 5135 |
. . . 4
⊢ (𝑎 = 𝑏 → ((𝐵‘𝑘)𝑅(𝐵‘𝑎) ↔ (𝐵‘𝑘)𝑅(𝐵‘𝑏))) |
| 39 | | fveq2 6886 |
. . . . 5
⊢ (𝑎 = (𝑏 + 1) → (𝐵‘𝑎) = (𝐵‘(𝑏 + 1))) |
| 40 | 39 | breq2d 5135 |
. . . 4
⊢ (𝑎 = (𝑏 + 1) → ((𝐵‘𝑘)𝑅(𝐵‘𝑎) ↔ (𝐵‘𝑘)𝑅(𝐵‘(𝑏 + 1)))) |
| 41 | | fveq2 6886 |
. . . . 5
⊢ (𝑎 = 𝑡 → (𝐵‘𝑎) = (𝐵‘𝑡)) |
| 42 | 41 | breq2d 5135 |
. . . 4
⊢ (𝑎 = 𝑡 → ((𝐵‘𝑘)𝑅(𝐵‘𝑎) ↔ (𝐵‘𝑘)𝑅(𝐵‘𝑡))) |
| 43 | | ormkglobd.3 |
. . . . 5
⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑇)(𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1))) |
| 44 | 43 | r19.21bi 3237 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1))) |
| 45 | | simp1l 1197 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝜑) |
| 46 | | ormkglobd.1 |
. . . . . 6
⊢ (𝜑 → 𝑅 Or 𝑆) |
| 47 | 45, 46 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑅 Or 𝑆) |
| 48 | | elfzofz 13697 |
. . . . . . . 8
⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ (0...𝑇)) |
| 49 | | elfzoel2 13680 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0..^𝑇) → 𝑇 ∈ ℤ) |
| 50 | | fzval3 13755 |
. . . . . . . . 9
⊢ (𝑇 ∈ ℤ →
(0...𝑇) = (0..^(𝑇 + 1))) |
| 51 | 49, 50 | syl 17 |
. . . . . . . 8
⊢ (𝑘 ∈ (0..^𝑇) → (0...𝑇) = (0..^(𝑇 + 1))) |
| 52 | 48, 51 | eleqtrd 2835 |
. . . . . . 7
⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ (0..^(𝑇 + 1))) |
| 53 | | ormkglobd.2 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑘 ∈ (0..^(𝑇 + 1))(𝐵‘𝑘) ∈ 𝑆) |
| 54 | 53 | r19.21bi 3237 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^(𝑇 + 1))) → (𝐵‘𝑘) ∈ 𝑆) |
| 55 | 52, 54 | sylan2 593 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝐵‘𝑘) ∈ 𝑆) |
| 56 | 55 | 3ad2ant1 1133 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → (𝐵‘𝑘) ∈ 𝑆) |
| 57 | | simp1l 1197 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝜑) |
| 58 | | simp21 1206 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 ∈ ℤ) |
| 59 | | 0red 11246 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 0 ∈ ℝ) |
| 60 | | simp1r 1198 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ (0..^𝑇)) |
| 61 | | elfzoelz 13681 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ) |
| 62 | 60, 61 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ ℤ) |
| 63 | 62 | zred 12705 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ ℝ) |
| 64 | | 1red 11244 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 1 ∈ ℝ) |
| 65 | 63, 64 | readdcld 11272 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → (𝑘 + 1) ∈ ℝ) |
| 66 | | simp21 1206 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 ∈ ℤ) |
| 67 | 66 | zred 12705 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 ∈ ℝ) |
| 68 | | simp1r 1198 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ (0..^𝑇)) |
| 69 | | elfzoelz 13681 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ) |
| 70 | 68, 69 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ ℤ) |
| 71 | 70 | zred 12705 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ ℝ) |
| 72 | | 1red 11244 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 1 ∈ ℝ) |
| 73 | | simp1r 1198 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ (0..^𝑇)) |
| 74 | | elfzole1 13689 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0..^𝑇) → 0 ≤ 𝑘) |
| 75 | 73, 74 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 0 ≤ 𝑘) |
| 76 | | 0le1 11768 |
. . . . . . . . . . 11
⊢ 0 ≤
1 |
| 77 | 76 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 0 ≤ 1) |
| 78 | 71, 72, 75, 77 | addge0d 11821 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 0 ≤ (𝑘 + 1)) |
| 79 | | simp22 1207 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → (𝑘 + 1) ≤ 𝑏) |
| 80 | 59, 65, 67, 78, 79 | letrd 11400 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 0 ≤ 𝑏) |
| 81 | | elnn0z 12609 |
. . . . . . . 8
⊢ (𝑏 ∈ ℕ0
↔ (𝑏 ∈ ℤ
∧ 0 ≤ 𝑏)) |
| 82 | 58, 80, 81 | sylanbrc 583 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 ∈ ℕ0) |
| 83 | | simp1r 1198 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ (0..^𝑇)) |
| 84 | | elfzoel2 13680 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0..^𝑇) → 𝑇 ∈ ℤ) |
| 85 | 83, 84 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑇 ∈ ℤ) |
| 86 | 85 | peano2zd 12708 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → (𝑇 + 1) ∈ ℤ) |
| 87 | | simp21 1206 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 ∈ ℤ) |
| 88 | 87 | zred 12705 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 ∈ ℝ) |
| 89 | | simp1r 1198 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ (0..^𝑇)) |
| 90 | | elfzoel2 13680 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0..^𝑇) → 𝑇 ∈ ℤ) |
| 91 | 89, 90 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑇 ∈ ℤ) |
| 92 | 91 | zred 12705 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑇 ∈ ℝ) |
| 93 | | simp1r 1198 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ (0..^𝑇)) |
| 94 | | elfzoel2 13680 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0..^𝑇) → 𝑇 ∈ ℤ) |
| 95 | 93, 94 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑇 ∈ ℤ) |
| 96 | 95 | zred 12705 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑇 ∈ ℝ) |
| 97 | | 1red 11244 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 1 ∈ ℝ) |
| 98 | 96, 97 | readdcld 11272 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → (𝑇 + 1) ∈ ℝ) |
| 99 | | simp23 1208 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 < 𝑇) |
| 100 | | simp1r 1198 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ (0..^𝑇)) |
| 101 | | elfzoel2 13680 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0..^𝑇) → 𝑇 ∈ ℤ) |
| 102 | 100, 101 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑇 ∈ ℤ) |
| 103 | 102 | zred 12705 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑇 ∈ ℝ) |
| 104 | 103 | ltp1d 12180 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑇 < (𝑇 + 1)) |
| 105 | 88, 92, 98, 99, 104 | lttrd 11404 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 < (𝑇 + 1)) |
| 106 | | elfzo0z 13723 |
. . . . . . 7
⊢ (𝑏 ∈ (0..^(𝑇 + 1)) ↔ (𝑏 ∈ ℕ0 ∧ (𝑇 + 1) ∈ ℤ ∧ 𝑏 < (𝑇 + 1))) |
| 107 | 82, 86, 105, 106 | syl3anbrc 1343 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 ∈ (0..^(𝑇 + 1))) |
| 108 | | eleq1w 2816 |
. . . . . . . . 9
⊢ (𝑘 = 𝑏 → (𝑘 ∈ (0..^(𝑇 + 1)) ↔ 𝑏 ∈ (0..^(𝑇 + 1)))) |
| 109 | 108 | anbi2d 630 |
. . . . . . . 8
⊢ (𝑘 = 𝑏 → ((𝜑 ∧ 𝑘 ∈ (0..^(𝑇 + 1))) ↔ (𝜑 ∧ 𝑏 ∈ (0..^(𝑇 + 1))))) |
| 110 | 53 | r19.21bi 3237 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^(𝑇 + 1))) → (𝐵‘𝑘) ∈ 𝑆) |
| 111 | | fveq2 6886 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑏 → (𝐵‘𝑘) = (𝐵‘𝑏)) |
| 112 | 111 | eleq1d 2818 |
. . . . . . . . 9
⊢ (𝑘 = 𝑏 → ((𝐵‘𝑘) ∈ 𝑆 ↔ (𝐵‘𝑏) ∈ 𝑆)) |
| 113 | 110, 112 | imbitrid 244 |
. . . . . . . 8
⊢ (𝑘 = 𝑏 → ((𝜑 ∧ 𝑘 ∈ (0..^(𝑇 + 1))) → (𝐵‘𝑏) ∈ 𝑆)) |
| 114 | 109, 113 | sylbird 260 |
. . . . . . 7
⊢ (𝑘 = 𝑏 → ((𝜑 ∧ 𝑏 ∈ (0..^(𝑇 + 1))) → (𝐵‘𝑏) ∈ 𝑆)) |
| 115 | | ax6ev 1968 |
. . . . . . 7
⊢
∃𝑘 𝑘 = 𝑏 |
| 116 | 114, 115 | exlimiiv 1930 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ (0..^(𝑇 + 1))) → (𝐵‘𝑏) ∈ 𝑆) |
| 117 | 57, 107, 116 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → (𝐵‘𝑏) ∈ 𝑆) |
| 118 | | simp1l 1197 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝜑) |
| 119 | | simp21 1206 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 ∈ ℤ) |
| 120 | | 0red 11246 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 0 ∈ ℝ) |
| 121 | | simp1r 1198 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ (0..^𝑇)) |
| 122 | | elfzoelz 13681 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ) |
| 123 | 121, 122 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ ℤ) |
| 124 | 123 | zred 12705 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ ℝ) |
| 125 | | 1red 11244 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 1 ∈ ℝ) |
| 126 | 124, 125 | readdcld 11272 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → (𝑘 + 1) ∈ ℝ) |
| 127 | | simp21 1206 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 ∈ ℤ) |
| 128 | 127 | zred 12705 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 ∈ ℝ) |
| 129 | | simp1r 1198 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ (0..^𝑇)) |
| 130 | | elfzoelz 13681 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ) |
| 131 | 129, 130 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ ℤ) |
| 132 | 131 | zred 12705 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ ℝ) |
| 133 | | 1red 11244 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 1 ∈ ℝ) |
| 134 | | simp1r 1198 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ (0..^𝑇)) |
| 135 | | elfzole1 13689 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0..^𝑇) → 0 ≤ 𝑘) |
| 136 | 134, 135 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 0 ≤ 𝑘) |
| 137 | 76 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 0 ≤ 1) |
| 138 | 132, 133,
136, 137 | addge0d 11821 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 0 ≤ (𝑘 + 1)) |
| 139 | | simp22 1207 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → (𝑘 + 1) ≤ 𝑏) |
| 140 | 120, 126,
128, 138, 139 | letrd 11400 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 0 ≤ 𝑏) |
| 141 | | elnn0z 12609 |
. . . . . . . . 9
⊢ (𝑏 ∈ ℕ0
↔ (𝑏 ∈ ℤ
∧ 0 ≤ 𝑏)) |
| 142 | 119, 140,
141 | sylanbrc 583 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 ∈ ℕ0) |
| 143 | | 1nn0 12525 |
. . . . . . . . 9
⊢ 1 ∈
ℕ0 |
| 144 | 143 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 1 ∈
ℕ0) |
| 145 | 142, 144 | nn0addcld 12574 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → (𝑏 + 1) ∈
ℕ0) |
| 146 | | simp1r 1198 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ (0..^𝑇)) |
| 147 | | elfzoel2 13680 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0..^𝑇) → 𝑇 ∈ ℤ) |
| 148 | 146, 147 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑇 ∈ ℤ) |
| 149 | 148 | peano2zd 12708 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → (𝑇 + 1) ∈ ℤ) |
| 150 | | simp21 1206 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 ∈ ℤ) |
| 151 | 150 | zred 12705 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 ∈ ℝ) |
| 152 | | simp1r 1198 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ (0..^𝑇)) |
| 153 | | elfzoel2 13680 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0..^𝑇) → 𝑇 ∈ ℤ) |
| 154 | 152, 153 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑇 ∈ ℤ) |
| 155 | 154 | zred 12705 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑇 ∈ ℝ) |
| 156 | | 1red 11244 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 1 ∈ ℝ) |
| 157 | | simp23 1208 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 < 𝑇) |
| 158 | 151, 155,
156, 157 | ltadd1dd 11856 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → (𝑏 + 1) < (𝑇 + 1)) |
| 159 | | elfzo0z 13723 |
. . . . . . 7
⊢ ((𝑏 + 1) ∈ (0..^(𝑇 + 1)) ↔ ((𝑏 + 1) ∈ ℕ0
∧ (𝑇 + 1) ∈
ℤ ∧ (𝑏 + 1) <
(𝑇 + 1))) |
| 160 | 145, 149,
158, 159 | syl3anbrc 1343 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → (𝑏 + 1) ∈ (0..^(𝑇 + 1))) |
| 161 | | ovex 7446 |
. . . . . . 7
⊢ (𝑏 + 1) ∈ V |
| 162 | | eleq1 2821 |
. . . . . . . . 9
⊢ (𝑘 = (𝑏 + 1) → (𝑘 ∈ (0..^(𝑇 + 1)) ↔ (𝑏 + 1) ∈ (0..^(𝑇 + 1)))) |
| 163 | 162 | anbi2d 630 |
. . . . . . . 8
⊢ (𝑘 = (𝑏 + 1) → ((𝜑 ∧ 𝑘 ∈ (0..^(𝑇 + 1))) ↔ (𝜑 ∧ (𝑏 + 1) ∈ (0..^(𝑇 + 1))))) |
| 164 | 53 | r19.21bi 3237 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^(𝑇 + 1))) → (𝐵‘𝑘) ∈ 𝑆) |
| 165 | | fveq2 6886 |
. . . . . . . . . 10
⊢ (𝑘 = (𝑏 + 1) → (𝐵‘𝑘) = (𝐵‘(𝑏 + 1))) |
| 166 | 165 | eleq1d 2818 |
. . . . . . . . 9
⊢ (𝑘 = (𝑏 + 1) → ((𝐵‘𝑘) ∈ 𝑆 ↔ (𝐵‘(𝑏 + 1)) ∈ 𝑆)) |
| 167 | 164, 166 | imbitrid 244 |
. . . . . . . 8
⊢ (𝑘 = (𝑏 + 1) → ((𝜑 ∧ 𝑘 ∈ (0..^(𝑇 + 1))) → (𝐵‘(𝑏 + 1)) ∈ 𝑆)) |
| 168 | 163, 167 | sylbird 260 |
. . . . . . 7
⊢ (𝑘 = (𝑏 + 1) → ((𝜑 ∧ (𝑏 + 1) ∈ (0..^(𝑇 + 1))) → (𝐵‘(𝑏 + 1)) ∈ 𝑆)) |
| 169 | 161, 168 | vtocle 3538 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 + 1) ∈ (0..^(𝑇 + 1))) → (𝐵‘(𝑏 + 1)) ∈ 𝑆) |
| 170 | 118, 160,
169 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → (𝐵‘(𝑏 + 1)) ∈ 𝑆) |
| 171 | | simp3 1138 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → (𝐵‘𝑘)𝑅(𝐵‘𝑏)) |
| 172 | | simp1l 1197 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝜑) |
| 173 | | simp21 1206 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 ∈ ℤ) |
| 174 | | 0red 11246 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 0 ∈ ℝ) |
| 175 | | simp1r 1198 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ (0..^𝑇)) |
| 176 | | elfzoelz 13681 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ) |
| 177 | 175, 176 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ ℤ) |
| 178 | 177 | zred 12705 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ ℝ) |
| 179 | | 1red 11244 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 1 ∈ ℝ) |
| 180 | 178, 179 | readdcld 11272 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → (𝑘 + 1) ∈ ℝ) |
| 181 | | simp21 1206 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 ∈ ℤ) |
| 182 | 181 | zred 12705 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 ∈ ℝ) |
| 183 | | simp1r 1198 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ (0..^𝑇)) |
| 184 | | elfzoelz 13681 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ) |
| 185 | 183, 184 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ ℤ) |
| 186 | 185 | zred 12705 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ ℝ) |
| 187 | | 1red 11244 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 1 ∈ ℝ) |
| 188 | | simp1r 1198 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ (0..^𝑇)) |
| 189 | | elfzole1 13689 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0..^𝑇) → 0 ≤ 𝑘) |
| 190 | 188, 189 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 0 ≤ 𝑘) |
| 191 | 76 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 0 ≤ 1) |
| 192 | 186, 187,
190, 191 | addge0d 11821 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 0 ≤ (𝑘 + 1)) |
| 193 | | simp22 1207 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → (𝑘 + 1) ≤ 𝑏) |
| 194 | 174, 180,
182, 192, 193 | letrd 11400 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 0 ≤ 𝑏) |
| 195 | | elnn0z 12609 |
. . . . . . . 8
⊢ (𝑏 ∈ ℕ0
↔ (𝑏 ∈ ℤ
∧ 0 ≤ 𝑏)) |
| 196 | 173, 194,
195 | sylanbrc 583 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 ∈ ℕ0) |
| 197 | | simp1r 1198 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ (0..^𝑇)) |
| 198 | | elfzoel2 13680 |
. . . . . . . 8
⊢ (𝑘 ∈ (0..^𝑇) → 𝑇 ∈ ℤ) |
| 199 | 197, 198 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑇 ∈ ℤ) |
| 200 | | simp23 1208 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 < 𝑇) |
| 201 | | elfzo0z 13723 |
. . . . . . 7
⊢ (𝑏 ∈ (0..^𝑇) ↔ (𝑏 ∈ ℕ0 ∧ 𝑇 ∈ ℤ ∧ 𝑏 < 𝑇)) |
| 202 | 196, 199,
200, 201 | syl3anbrc 1343 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 ∈ (0..^𝑇)) |
| 203 | | eleq1w 2816 |
. . . . . . . . 9
⊢ (𝑏 = 𝑘 → (𝑏 ∈ (0..^𝑇) ↔ 𝑘 ∈ (0..^𝑇))) |
| 204 | 203 | anbi2d 630 |
. . . . . . . 8
⊢ (𝑏 = 𝑘 → ((𝜑 ∧ 𝑏 ∈ (0..^𝑇)) ↔ (𝜑 ∧ 𝑘 ∈ (0..^𝑇)))) |
| 205 | 43 | r19.21bi 3237 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1))) |
| 206 | | fveq2 6886 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑘 → (𝐵‘𝑏) = (𝐵‘𝑘)) |
| 207 | | fvoveq1 7436 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑘 → (𝐵‘(𝑏 + 1)) = (𝐵‘(𝑘 + 1))) |
| 208 | 206, 207 | breq12d 5136 |
. . . . . . . . 9
⊢ (𝑏 = 𝑘 → ((𝐵‘𝑏)𝑅(𝐵‘(𝑏 + 1)) ↔ (𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1)))) |
| 209 | 205, 208 | imbitrrid 246 |
. . . . . . . 8
⊢ (𝑏 = 𝑘 → ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝐵‘𝑏)𝑅(𝐵‘(𝑏 + 1)))) |
| 210 | 204, 209 | sylbid 240 |
. . . . . . 7
⊢ (𝑏 = 𝑘 → ((𝜑 ∧ 𝑏 ∈ (0..^𝑇)) → (𝐵‘𝑏)𝑅(𝐵‘(𝑏 + 1)))) |
| 211 | | ax6evr 2013 |
. . . . . . 7
⊢
∃𝑘 𝑏 = 𝑘 |
| 212 | 210, 211 | exlimiiv 1930 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ (0..^𝑇)) → (𝐵‘𝑏)𝑅(𝐵‘(𝑏 + 1))) |
| 213 | 172, 202,
212 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → (𝐵‘𝑏)𝑅(𝐵‘(𝑏 + 1))) |
| 214 | 47, 56, 117, 170, 171, 213 | sotrd 5598 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → (𝐵‘𝑘)𝑅(𝐵‘(𝑏 + 1))) |
| 215 | | elfzoelz 13681 |
. . . . . 6
⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ) |
| 216 | 215 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → 𝑘 ∈ ℤ) |
| 217 | 216 | peano2zd 12708 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝑘 + 1) ∈ ℤ) |
| 218 | | elfzoel2 13680 |
. . . . 5
⊢ (𝑘 ∈ (0..^𝑇) → 𝑇 ∈ ℤ) |
| 219 | 218 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → 𝑇 ∈ ℤ) |
| 220 | | elfzop1le2 13694 |
. . . . 5
⊢ (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ≤ 𝑇) |
| 221 | 220 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝑘 + 1) ≤ 𝑇) |
| 222 | 36, 38, 40, 42, 44, 214, 217, 219, 221 | fzindd 12703 |
. . 3
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑡 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑡 ∧ 𝑡 ≤ 𝑇)) → (𝐵‘𝑘)𝑅(𝐵‘𝑡)) |
| 223 | 34, 222 | syl8 76 |
. 2
⊢ (𝜑 → ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑘 < 𝑡 → (𝐵‘𝑘)𝑅(𝐵‘𝑡)))) |
| 224 | 223 | ralrimivv 3187 |
1
⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵‘𝑘)𝑅(𝐵‘𝑡))) |