Step | Hyp | Ref
| Expression |
1 | | 2a1 28 |
. . . . . . 7
⊢ (𝜑 → ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑘 < 𝑡 → 𝜑))) |
2 | 1 | imp 406 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1)))) → (𝑘 < 𝑡 → 𝜑)) |
3 | | 2a1 28 |
. . . . . . . 8
⊢ (𝑘 ∈ (0..^𝑇) → (𝑡 ∈ (1..^(𝑇 + 1)) → (𝑘 < 𝑡 → 𝑘 ∈ (0..^𝑇)))) |
4 | 3 | imp 406 |
. . . . . . 7
⊢ ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑘 < 𝑡 → 𝑘 ∈ (0..^𝑇))) |
5 | 4 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1)))) → (𝑘 < 𝑡 → 𝑘 ∈ (0..^𝑇))) |
6 | 2, 5 | jcad 512 |
. . . . 5
⊢ ((𝜑 ∧ (𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1)))) → (𝑘 < 𝑡 → (𝜑 ∧ 𝑘 ∈ (0..^𝑇)))) |
7 | | elfzoelz 13695 |
. . . . . . . . 9
⊢ (𝑡 ∈ (1..^(𝑇 + 1)) → 𝑡 ∈ ℤ) |
8 | 7 | adantl 481 |
. . . . . . . 8
⊢ ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → 𝑡 ∈ ℤ) |
9 | 8 | a1d 25 |
. . . . . . 7
⊢ ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑘 < 𝑡 → 𝑡 ∈ ℤ)) |
10 | | elfzoelz 13695 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ) |
11 | 10 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → 𝑘 ∈ ℤ) |
12 | | elfzoelz 13695 |
. . . . . . . . . 10
⊢ (𝑡 ∈ (1..^(𝑇 + 1)) → 𝑡 ∈ ℤ) |
13 | 12 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → 𝑡 ∈ ℤ) |
14 | | zltp1le 12663 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℤ ∧ 𝑡 ∈ ℤ) → (𝑘 < 𝑡 ↔ (𝑘 + 1) ≤ 𝑡)) |
15 | 11, 13, 14 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑘 < 𝑡 ↔ (𝑘 + 1) ≤ 𝑡)) |
16 | 15 | biimpd 229 |
. . . . . . 7
⊢ ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑘 < 𝑡 → (𝑘 + 1) ≤ 𝑡)) |
17 | | elfzoelz 13695 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ (1..^(𝑇 + 1)) → 𝑡 ∈ ℤ) |
18 | 17 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → 𝑡 ∈ ℤ) |
19 | 18 | zred 12718 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → 𝑡 ∈ ℝ) |
20 | | elfzoel2 13694 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0..^𝑇) → 𝑇 ∈ ℤ) |
21 | 20 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → 𝑇 ∈ ℤ) |
22 | 21 | zred 12718 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → 𝑇 ∈ ℝ) |
23 | | 1red 11258 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → 1 ∈
ℝ) |
24 | 19, 22, 23 | 3jca 1129 |
. . . . . . . . 9
⊢ ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑡 ∈ ℝ ∧ 𝑇 ∈ ℝ ∧ 1 ∈
ℝ)) |
25 | | elfzop1le2 13708 |
. . . . . . . . . 10
⊢ (𝑡 ∈ (1..^(𝑇 + 1)) → (𝑡 + 1) ≤ (𝑇 + 1)) |
26 | 25 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑡 + 1) ≤ (𝑇 + 1)) |
27 | | leadd1 11727 |
. . . . . . . . . 10
⊢ ((𝑡 ∈ ℝ ∧ 𝑇 ∈ ℝ ∧ 1 ∈
ℝ) → (𝑡 ≤
𝑇 ↔ (𝑡 + 1) ≤ (𝑇 + 1))) |
28 | 27 | biimprd 248 |
. . . . . . . . 9
⊢ ((𝑡 ∈ ℝ ∧ 𝑇 ∈ ℝ ∧ 1 ∈
ℝ) → ((𝑡 + 1)
≤ (𝑇 + 1) → 𝑡 ≤ 𝑇)) |
29 | 24, 26, 28 | sylc 65 |
. . . . . . . 8
⊢ ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → 𝑡 ≤ 𝑇) |
30 | 29 | a1d 25 |
. . . . . . 7
⊢ ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑘 < 𝑡 → 𝑡 ≤ 𝑇)) |
31 | 9, 16, 30 | 3jcad 1130 |
. . . . . 6
⊢ ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑘 < 𝑡 → (𝑡 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑡 ∧ 𝑡 ≤ 𝑇))) |
32 | 31 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1)))) → (𝑘 < 𝑡 → (𝑡 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑡 ∧ 𝑡 ≤ 𝑇))) |
33 | 6, 32 | jcad 512 |
. . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1)))) → (𝑘 < 𝑡 → ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑡 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑡 ∧ 𝑡 ≤ 𝑇)))) |
34 | 33 | ex 412 |
. . 3
⊢ (𝜑 → ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑘 < 𝑡 → ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑡 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑡 ∧ 𝑡 ≤ 𝑇))))) |
35 | | fveq2 6904 |
. . . . 5
⊢ (𝑎 = (𝑘 + 1) → (𝐵‘𝑎) = (𝐵‘(𝑘 + 1))) |
36 | 35 | breq2d 5153 |
. . . 4
⊢ (𝑎 = (𝑘 + 1) → ((𝐵‘𝑘)𝑅(𝐵‘𝑎) ↔ (𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1)))) |
37 | | fveq2 6904 |
. . . . 5
⊢ (𝑎 = 𝑏 → (𝐵‘𝑎) = (𝐵‘𝑏)) |
38 | 37 | breq2d 5153 |
. . . 4
⊢ (𝑎 = 𝑏 → ((𝐵‘𝑘)𝑅(𝐵‘𝑎) ↔ (𝐵‘𝑘)𝑅(𝐵‘𝑏))) |
39 | | fveq2 6904 |
. . . . 5
⊢ (𝑎 = (𝑏 + 1) → (𝐵‘𝑎) = (𝐵‘(𝑏 + 1))) |
40 | 39 | breq2d 5153 |
. . . 4
⊢ (𝑎 = (𝑏 + 1) → ((𝐵‘𝑘)𝑅(𝐵‘𝑎) ↔ (𝐵‘𝑘)𝑅(𝐵‘(𝑏 + 1)))) |
41 | | fveq2 6904 |
. . . . 5
⊢ (𝑎 = 𝑡 → (𝐵‘𝑎) = (𝐵‘𝑡)) |
42 | 41 | breq2d 5153 |
. . . 4
⊢ (𝑎 = 𝑡 → ((𝐵‘𝑘)𝑅(𝐵‘𝑎) ↔ (𝐵‘𝑘)𝑅(𝐵‘𝑡))) |
43 | | ormkglobd.3 |
. . . . 5
⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑇)(𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1))) |
44 | 43 | r19.21bi 3250 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1))) |
45 | | simp1l 1198 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝜑) |
46 | | ormkglobd.1 |
. . . . . 6
⊢ (𝜑 → 𝑅 Or 𝑆) |
47 | 45, 46 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑅 Or 𝑆) |
48 | | elfzofz 13711 |
. . . . . . . 8
⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ (0...𝑇)) |
49 | | elfzoel2 13694 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0..^𝑇) → 𝑇 ∈ ℤ) |
50 | | fzval3 13769 |
. . . . . . . . 9
⊢ (𝑇 ∈ ℤ →
(0...𝑇) = (0..^(𝑇 + 1))) |
51 | 49, 50 | syl 17 |
. . . . . . . 8
⊢ (𝑘 ∈ (0..^𝑇) → (0...𝑇) = (0..^(𝑇 + 1))) |
52 | 48, 51 | eleqtrd 2842 |
. . . . . . 7
⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ (0..^(𝑇 + 1))) |
53 | | ormkglobd.2 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑘 ∈ (0..^(𝑇 + 1))(𝐵‘𝑘) ∈ 𝑆) |
54 | 53 | r19.21bi 3250 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^(𝑇 + 1))) → (𝐵‘𝑘) ∈ 𝑆) |
55 | 52, 54 | sylan2 593 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝐵‘𝑘) ∈ 𝑆) |
56 | 55 | 3ad2ant1 1134 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → (𝐵‘𝑘) ∈ 𝑆) |
57 | | simp1l 1198 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝜑) |
58 | | simp21 1207 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 ∈ ℤ) |
59 | | 0red 11260 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 0 ∈ ℝ) |
60 | | simp1r 1199 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ (0..^𝑇)) |
61 | | elfzoelz 13695 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ) |
62 | 60, 61 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ ℤ) |
63 | 62 | zred 12718 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ ℝ) |
64 | | 1red 11258 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 1 ∈ ℝ) |
65 | 63, 64 | readdcld 11286 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → (𝑘 + 1) ∈ ℝ) |
66 | | simp21 1207 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 ∈ ℤ) |
67 | 66 | zred 12718 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 ∈ ℝ) |
68 | | simp1r 1199 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ (0..^𝑇)) |
69 | | elfzoelz 13695 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ) |
70 | 68, 69 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ ℤ) |
71 | 70 | zred 12718 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ ℝ) |
72 | | 1red 11258 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 1 ∈ ℝ) |
73 | | simp1r 1199 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ (0..^𝑇)) |
74 | | elfzole1 13703 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0..^𝑇) → 0 ≤ 𝑘) |
75 | 73, 74 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 0 ≤ 𝑘) |
76 | | 0le1 11782 |
. . . . . . . . . . 11
⊢ 0 ≤
1 |
77 | 76 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 0 ≤ 1) |
78 | 71, 72, 75, 77 | addge0d 11835 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 0 ≤ (𝑘 + 1)) |
79 | | simp22 1208 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → (𝑘 + 1) ≤ 𝑏) |
80 | 59, 65, 67, 78, 79 | letrd 11414 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 0 ≤ 𝑏) |
81 | | elnn0z 12622 |
. . . . . . . 8
⊢ (𝑏 ∈ ℕ0
↔ (𝑏 ∈ ℤ
∧ 0 ≤ 𝑏)) |
82 | 58, 80, 81 | sylanbrc 583 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 ∈ ℕ0) |
83 | | simp1r 1199 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ (0..^𝑇)) |
84 | | elfzoel2 13694 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0..^𝑇) → 𝑇 ∈ ℤ) |
85 | 83, 84 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑇 ∈ ℤ) |
86 | 85 | peano2zd 12721 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → (𝑇 + 1) ∈ ℤ) |
87 | | simp21 1207 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 ∈ ℤ) |
88 | 87 | zred 12718 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 ∈ ℝ) |
89 | | simp1r 1199 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ (0..^𝑇)) |
90 | | elfzoel2 13694 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0..^𝑇) → 𝑇 ∈ ℤ) |
91 | 89, 90 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑇 ∈ ℤ) |
92 | 91 | zred 12718 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑇 ∈ ℝ) |
93 | | simp1r 1199 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ (0..^𝑇)) |
94 | | elfzoel2 13694 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0..^𝑇) → 𝑇 ∈ ℤ) |
95 | 93, 94 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑇 ∈ ℤ) |
96 | 95 | zred 12718 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑇 ∈ ℝ) |
97 | | 1red 11258 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 1 ∈ ℝ) |
98 | 96, 97 | readdcld 11286 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → (𝑇 + 1) ∈ ℝ) |
99 | | simp23 1209 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 < 𝑇) |
100 | | simp1r 1199 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ (0..^𝑇)) |
101 | | elfzoel2 13694 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0..^𝑇) → 𝑇 ∈ ℤ) |
102 | 100, 101 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑇 ∈ ℤ) |
103 | 102 | zred 12718 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑇 ∈ ℝ) |
104 | 103 | ltp1d 12194 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑇 < (𝑇 + 1)) |
105 | 88, 92, 98, 99, 104 | lttrd 11418 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 < (𝑇 + 1)) |
106 | | elfzo0z 13737 |
. . . . . . 7
⊢ (𝑏 ∈ (0..^(𝑇 + 1)) ↔ (𝑏 ∈ ℕ0 ∧ (𝑇 + 1) ∈ ℤ ∧ 𝑏 < (𝑇 + 1))) |
107 | 82, 86, 105, 106 | syl3anbrc 1344 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 ∈ (0..^(𝑇 + 1))) |
108 | | eleq1w 2823 |
. . . . . . . . 9
⊢ (𝑘 = 𝑏 → (𝑘 ∈ (0..^(𝑇 + 1)) ↔ 𝑏 ∈ (0..^(𝑇 + 1)))) |
109 | 108 | anbi2d 630 |
. . . . . . . 8
⊢ (𝑘 = 𝑏 → ((𝜑 ∧ 𝑘 ∈ (0..^(𝑇 + 1))) ↔ (𝜑 ∧ 𝑏 ∈ (0..^(𝑇 + 1))))) |
110 | 53 | r19.21bi 3250 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^(𝑇 + 1))) → (𝐵‘𝑘) ∈ 𝑆) |
111 | | fveq2 6904 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑏 → (𝐵‘𝑘) = (𝐵‘𝑏)) |
112 | 111 | eleq1d 2825 |
. . . . . . . . 9
⊢ (𝑘 = 𝑏 → ((𝐵‘𝑘) ∈ 𝑆 ↔ (𝐵‘𝑏) ∈ 𝑆)) |
113 | 110, 112 | imbitrid 244 |
. . . . . . . 8
⊢ (𝑘 = 𝑏 → ((𝜑 ∧ 𝑘 ∈ (0..^(𝑇 + 1))) → (𝐵‘𝑏) ∈ 𝑆)) |
114 | 109, 113 | sylbird 260 |
. . . . . . 7
⊢ (𝑘 = 𝑏 → ((𝜑 ∧ 𝑏 ∈ (0..^(𝑇 + 1))) → (𝐵‘𝑏) ∈ 𝑆)) |
115 | | ax6ev 1969 |
. . . . . . 7
⊢
∃𝑘 𝑘 = 𝑏 |
116 | 114, 115 | exlimiiv 1931 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ (0..^(𝑇 + 1))) → (𝐵‘𝑏) ∈ 𝑆) |
117 | 57, 107, 116 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → (𝐵‘𝑏) ∈ 𝑆) |
118 | | simp1l 1198 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝜑) |
119 | | simp21 1207 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 ∈ ℤ) |
120 | | 0red 11260 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 0 ∈ ℝ) |
121 | | simp1r 1199 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ (0..^𝑇)) |
122 | | elfzoelz 13695 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ) |
123 | 121, 122 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ ℤ) |
124 | 123 | zred 12718 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ ℝ) |
125 | | 1red 11258 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 1 ∈ ℝ) |
126 | 124, 125 | readdcld 11286 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → (𝑘 + 1) ∈ ℝ) |
127 | | simp21 1207 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 ∈ ℤ) |
128 | 127 | zred 12718 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 ∈ ℝ) |
129 | | simp1r 1199 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ (0..^𝑇)) |
130 | | elfzoelz 13695 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ) |
131 | 129, 130 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ ℤ) |
132 | 131 | zred 12718 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ ℝ) |
133 | | 1red 11258 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 1 ∈ ℝ) |
134 | | simp1r 1199 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ (0..^𝑇)) |
135 | | elfzole1 13703 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0..^𝑇) → 0 ≤ 𝑘) |
136 | 134, 135 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 0 ≤ 𝑘) |
137 | 76 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 0 ≤ 1) |
138 | 132, 133,
136, 137 | addge0d 11835 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 0 ≤ (𝑘 + 1)) |
139 | | simp22 1208 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → (𝑘 + 1) ≤ 𝑏) |
140 | 120, 126,
128, 138, 139 | letrd 11414 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 0 ≤ 𝑏) |
141 | | elnn0z 12622 |
. . . . . . . . 9
⊢ (𝑏 ∈ ℕ0
↔ (𝑏 ∈ ℤ
∧ 0 ≤ 𝑏)) |
142 | 119, 140,
141 | sylanbrc 583 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 ∈ ℕ0) |
143 | | 1nn0 12538 |
. . . . . . . . 9
⊢ 1 ∈
ℕ0 |
144 | 143 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 1 ∈
ℕ0) |
145 | 142, 144 | nn0addcld 12587 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → (𝑏 + 1) ∈
ℕ0) |
146 | | simp1r 1199 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ (0..^𝑇)) |
147 | | elfzoel2 13694 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0..^𝑇) → 𝑇 ∈ ℤ) |
148 | 146, 147 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑇 ∈ ℤ) |
149 | 148 | peano2zd 12721 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → (𝑇 + 1) ∈ ℤ) |
150 | | simp21 1207 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 ∈ ℤ) |
151 | 150 | zred 12718 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 ∈ ℝ) |
152 | | simp1r 1199 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ (0..^𝑇)) |
153 | | elfzoel2 13694 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0..^𝑇) → 𝑇 ∈ ℤ) |
154 | 152, 153 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑇 ∈ ℤ) |
155 | 154 | zred 12718 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑇 ∈ ℝ) |
156 | | 1red 11258 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 1 ∈ ℝ) |
157 | | simp23 1209 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 < 𝑇) |
158 | 151, 155,
156, 157 | ltadd1dd 11870 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → (𝑏 + 1) < (𝑇 + 1)) |
159 | | elfzo0z 13737 |
. . . . . . 7
⊢ ((𝑏 + 1) ∈ (0..^(𝑇 + 1)) ↔ ((𝑏 + 1) ∈ ℕ0
∧ (𝑇 + 1) ∈
ℤ ∧ (𝑏 + 1) <
(𝑇 + 1))) |
160 | 145, 149,
158, 159 | syl3anbrc 1344 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → (𝑏 + 1) ∈ (0..^(𝑇 + 1))) |
161 | | ovex 7462 |
. . . . . . 7
⊢ (𝑏 + 1) ∈ V |
162 | | eleq1 2828 |
. . . . . . . . 9
⊢ (𝑘 = (𝑏 + 1) → (𝑘 ∈ (0..^(𝑇 + 1)) ↔ (𝑏 + 1) ∈ (0..^(𝑇 + 1)))) |
163 | 162 | anbi2d 630 |
. . . . . . . 8
⊢ (𝑘 = (𝑏 + 1) → ((𝜑 ∧ 𝑘 ∈ (0..^(𝑇 + 1))) ↔ (𝜑 ∧ (𝑏 + 1) ∈ (0..^(𝑇 + 1))))) |
164 | 53 | r19.21bi 3250 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^(𝑇 + 1))) → (𝐵‘𝑘) ∈ 𝑆) |
165 | | fveq2 6904 |
. . . . . . . . . 10
⊢ (𝑘 = (𝑏 + 1) → (𝐵‘𝑘) = (𝐵‘(𝑏 + 1))) |
166 | 165 | eleq1d 2825 |
. . . . . . . . 9
⊢ (𝑘 = (𝑏 + 1) → ((𝐵‘𝑘) ∈ 𝑆 ↔ (𝐵‘(𝑏 + 1)) ∈ 𝑆)) |
167 | 164, 166 | imbitrid 244 |
. . . . . . . 8
⊢ (𝑘 = (𝑏 + 1) → ((𝜑 ∧ 𝑘 ∈ (0..^(𝑇 + 1))) → (𝐵‘(𝑏 + 1)) ∈ 𝑆)) |
168 | 163, 167 | sylbird 260 |
. . . . . . 7
⊢ (𝑘 = (𝑏 + 1) → ((𝜑 ∧ (𝑏 + 1) ∈ (0..^(𝑇 + 1))) → (𝐵‘(𝑏 + 1)) ∈ 𝑆)) |
169 | 161, 168 | vtocle 3554 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 + 1) ∈ (0..^(𝑇 + 1))) → (𝐵‘(𝑏 + 1)) ∈ 𝑆) |
170 | 118, 160,
169 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → (𝐵‘(𝑏 + 1)) ∈ 𝑆) |
171 | | simp3 1139 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → (𝐵‘𝑘)𝑅(𝐵‘𝑏)) |
172 | | simp1l 1198 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝜑) |
173 | | simp21 1207 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 ∈ ℤ) |
174 | | 0red 11260 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 0 ∈ ℝ) |
175 | | simp1r 1199 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ (0..^𝑇)) |
176 | | elfzoelz 13695 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ) |
177 | 175, 176 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ ℤ) |
178 | 177 | zred 12718 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ ℝ) |
179 | | 1red 11258 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 1 ∈ ℝ) |
180 | 178, 179 | readdcld 11286 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → (𝑘 + 1) ∈ ℝ) |
181 | | simp21 1207 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 ∈ ℤ) |
182 | 181 | zred 12718 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 ∈ ℝ) |
183 | | simp1r 1199 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ (0..^𝑇)) |
184 | | elfzoelz 13695 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ) |
185 | 183, 184 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ ℤ) |
186 | 185 | zred 12718 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ ℝ) |
187 | | 1red 11258 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 1 ∈ ℝ) |
188 | | simp1r 1199 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ (0..^𝑇)) |
189 | | elfzole1 13703 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0..^𝑇) → 0 ≤ 𝑘) |
190 | 188, 189 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 0 ≤ 𝑘) |
191 | 76 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 0 ≤ 1) |
192 | 186, 187,
190, 191 | addge0d 11835 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 0 ≤ (𝑘 + 1)) |
193 | | simp22 1208 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → (𝑘 + 1) ≤ 𝑏) |
194 | 174, 180,
182, 192, 193 | letrd 11414 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 0 ≤ 𝑏) |
195 | | elnn0z 12622 |
. . . . . . . 8
⊢ (𝑏 ∈ ℕ0
↔ (𝑏 ∈ ℤ
∧ 0 ≤ 𝑏)) |
196 | 173, 194,
195 | sylanbrc 583 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 ∈ ℕ0) |
197 | | simp1r 1199 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑘 ∈ (0..^𝑇)) |
198 | | elfzoel2 13694 |
. . . . . . . 8
⊢ (𝑘 ∈ (0..^𝑇) → 𝑇 ∈ ℤ) |
199 | 197, 198 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑇 ∈ ℤ) |
200 | | simp23 1209 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 < 𝑇) |
201 | | elfzo0z 13737 |
. . . . . . 7
⊢ (𝑏 ∈ (0..^𝑇) ↔ (𝑏 ∈ ℕ0 ∧ 𝑇 ∈ ℤ ∧ 𝑏 < 𝑇)) |
202 | 196, 199,
200, 201 | syl3anbrc 1344 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → 𝑏 ∈ (0..^𝑇)) |
203 | | eleq1w 2823 |
. . . . . . . . 9
⊢ (𝑏 = 𝑘 → (𝑏 ∈ (0..^𝑇) ↔ 𝑘 ∈ (0..^𝑇))) |
204 | 203 | anbi2d 630 |
. . . . . . . 8
⊢ (𝑏 = 𝑘 → ((𝜑 ∧ 𝑏 ∈ (0..^𝑇)) ↔ (𝜑 ∧ 𝑘 ∈ (0..^𝑇)))) |
205 | 43 | r19.21bi 3250 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1))) |
206 | | fveq2 6904 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑘 → (𝐵‘𝑏) = (𝐵‘𝑘)) |
207 | | fvoveq1 7452 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑘 → (𝐵‘(𝑏 + 1)) = (𝐵‘(𝑘 + 1))) |
208 | 206, 207 | breq12d 5154 |
. . . . . . . . 9
⊢ (𝑏 = 𝑘 → ((𝐵‘𝑏)𝑅(𝐵‘(𝑏 + 1)) ↔ (𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1)))) |
209 | 205, 208 | imbitrrid 246 |
. . . . . . . 8
⊢ (𝑏 = 𝑘 → ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝐵‘𝑏)𝑅(𝐵‘(𝑏 + 1)))) |
210 | 204, 209 | sylbid 240 |
. . . . . . 7
⊢ (𝑏 = 𝑘 → ((𝜑 ∧ 𝑏 ∈ (0..^𝑇)) → (𝐵‘𝑏)𝑅(𝐵‘(𝑏 + 1)))) |
211 | | ax6evr 2014 |
. . . . . . 7
⊢
∃𝑘 𝑏 = 𝑘 |
212 | 210, 211 | exlimiiv 1931 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ (0..^𝑇)) → (𝐵‘𝑏)𝑅(𝐵‘(𝑏 + 1))) |
213 | 172, 202,
212 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → (𝐵‘𝑏)𝑅(𝐵‘(𝑏 + 1))) |
214 | 47, 56, 117, 170, 171, 213 | sotrd 5616 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘)𝑅(𝐵‘𝑏)) → (𝐵‘𝑘)𝑅(𝐵‘(𝑏 + 1))) |
215 | | elfzoelz 13695 |
. . . . . 6
⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ) |
216 | 215 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → 𝑘 ∈ ℤ) |
217 | 216 | peano2zd 12721 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝑘 + 1) ∈ ℤ) |
218 | | elfzoel2 13694 |
. . . . 5
⊢ (𝑘 ∈ (0..^𝑇) → 𝑇 ∈ ℤ) |
219 | 218 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → 𝑇 ∈ ℤ) |
220 | | elfzop1le2 13708 |
. . . . 5
⊢ (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ≤ 𝑇) |
221 | 220 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) → (𝑘 + 1) ≤ 𝑇) |
222 | 36, 38, 40, 42, 44, 214, 217, 219, 221 | fzindd 12716 |
. . 3
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑇)) ∧ (𝑡 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑡 ∧ 𝑡 ≤ 𝑇)) → (𝐵‘𝑘)𝑅(𝐵‘𝑡)) |
223 | 34, 222 | syl8 76 |
. 2
⊢ (𝜑 → ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ (1..^(𝑇 + 1))) → (𝑘 < 𝑡 → (𝐵‘𝑘)𝑅(𝐵‘𝑡)))) |
224 | 223 | ralrimivv 3199 |
1
⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵‘𝑘)𝑅(𝐵‘𝑡))) |