Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmmpllem1 Structured version   Visualization version   GIF version

Theorem rhmmpllem1 41678
Description: Lemma for rhmmpl 41682. A subproof of psrmulcllem 21848. (Contributed by SN, 8-Feb-2025.)
Hypotheses
Ref Expression
rhmmpllem1.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
rhmmpllem1.r (𝜑𝑅 ∈ Ring)
rhmmpllem1.x (𝜑𝑋:𝐷⟶(Base‘𝑅))
rhmmpllem1.y (𝜑𝑌:𝐷⟶(Base‘𝑅))
Assertion
Ref Expression
rhmmpllem1 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) finSupp (0g𝑅))
Distinct variable groups:   𝑥,𝐷,𝑦   𝑓,𝐼,𝑦   𝜑,𝑥   𝑓,𝑘,𝑦   𝑥,𝑘
Allowed substitution hints:   𝜑(𝑦,𝑓,𝑘)   𝐷(𝑓,𝑘)   𝑅(𝑥,𝑦,𝑓,𝑘)   𝐼(𝑥,𝑘)   𝑋(𝑥,𝑦,𝑓,𝑘)   𝑌(𝑥,𝑦,𝑓,𝑘)

Proof of Theorem rhmmpllem1
StepHypRef Expression
1 ovexd 7440 . . 3 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))) ∈ V)
21fmpttd 7110 . 2 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))):{𝑦𝐷𝑦r𝑘}⟶V)
3 rhmmpllem1.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
43psrbaglefi 21826 . . 3 (𝑘𝐷 → {𝑦𝐷𝑦r𝑘} ∈ Fin)
54adantl 481 . 2 ((𝜑𝑘𝐷) → {𝑦𝐷𝑦r𝑘} ∈ Fin)
6 fvexd 6900 . 2 ((𝜑𝑘𝐷) → (0g𝑅) ∈ V)
72, 5, 6fdmfifsupp 9375 1 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) finSupp (0g𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  {crab 3426  Vcvv 3468   class class class wbr 5141  cmpt 5224  ccnv 5668  cima 5672  wf 6533  cfv 6537  (class class class)co 7405  f cof 7665  r cofr 7666  m cmap 8822  Fincfn 8941   finSupp cfsupp 9363  cle 11253  cmin 11448  cn 12216  0cn0 12476  Basecbs 17153  .rcmulr 17207  0gc0g 17394  Ringcrg 20138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-ofr 7668  df-om 7853  df-1st 7974  df-2nd 7975  df-supp 8147  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-er 8705  df-map 8824  df-pm 8825  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13491
This theorem is referenced by:  rhmmpllem2  41679  rhmcomulmpl  41681
  Copyright terms: Public domain W3C validator