![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ring1ne0 | Structured version Visualization version GIF version |
Description: If a ring has at least two elements, its one and zero are different. (Contributed by AV, 13-Apr-2019.) |
Ref | Expression |
---|---|
ring1ne0.b | ⊢ 𝐵 = (Base‘𝑅) |
ring1ne0.u | ⊢ 1 = (1r‘𝑅) |
ring1ne0.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
ring1ne0 | ⊢ ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → 1 ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ring1ne0.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
2 | 1 | fvexi 6906 | . . . 4 ⊢ 𝐵 ∈ V |
3 | hashgt12el 14408 | . . . 4 ⊢ ((𝐵 ∈ V ∧ 1 < (♯‘𝐵)) → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 𝑥 ≠ 𝑦) | |
4 | 2, 3 | mpan 689 | . . 3 ⊢ (1 < (♯‘𝐵) → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 𝑥 ≠ 𝑦) |
5 | 4 | adantl 481 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 𝑥 ≠ 𝑦) |
6 | ring1ne0.u | . . . . . . . 8 ⊢ 1 = (1r‘𝑅) | |
7 | ring1ne0.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
8 | 1, 6, 7 | ring1eq0 20228 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ( 1 = 0 → 𝑥 = 𝑦)) |
9 | 8 | necon3d 2957 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ≠ 𝑦 → 1 ≠ 0 )) |
10 | 9 | 3expib 1120 | . . . . 5 ⊢ (𝑅 ∈ Ring → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ≠ 𝑦 → 1 ≠ 0 ))) |
11 | 10 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ≠ 𝑦 → 1 ≠ 0 ))) |
12 | 11 | com3l 89 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ≠ 𝑦 → ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → 1 ≠ 0 ))) |
13 | 12 | rexlimivv 3195 | . 2 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 𝑥 ≠ 𝑦 → ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → 1 ≠ 0 )) |
14 | 5, 13 | mpcom 38 | 1 ⊢ ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → 1 ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 ∃wrex 3066 Vcvv 3470 class class class wbr 5143 ‘cfv 6543 1c1 11134 < clt 11273 ♯chash 14316 Basecbs 17174 0gc0g 17415 1rcur 20115 Ringcrg 20167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-1st 7988 df-2nd 7989 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-1o 8481 df-er 8719 df-en 8959 df-dom 8960 df-sdom 8961 df-fin 8962 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-n0 12498 df-xnn0 12570 df-z 12584 df-uz 12848 df-fz 13512 df-hash 14317 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-plusg 17240 df-0g 17417 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-grp 18887 df-minusg 18888 df-cmn 19731 df-abl 19732 df-mgp 20069 df-rng 20087 df-ur 20116 df-ring 20169 |
This theorem is referenced by: isnzr2hash 20452 01eq0ringOLD 20462 el0ldep 47525 |
Copyright terms: Public domain | W3C validator |