![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ring1ne0 | Structured version Visualization version GIF version |
Description: If a ring has at least two elements, its one and zero are different. (Contributed by AV, 13-Apr-2019.) |
Ref | Expression |
---|---|
ring1ne0.b | ⊢ 𝐵 = (Base‘𝑅) |
ring1ne0.u | ⊢ 1 = (1r‘𝑅) |
ring1ne0.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
ring1ne0 | ⊢ ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → 1 ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ring1ne0.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
2 | 1 | fvexi 6905 | . . . 4 ⊢ 𝐵 ∈ V |
3 | hashgt12el 14387 | . . . 4 ⊢ ((𝐵 ∈ V ∧ 1 < (♯‘𝐵)) → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 𝑥 ≠ 𝑦) | |
4 | 2, 3 | mpan 687 | . . 3 ⊢ (1 < (♯‘𝐵) → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 𝑥 ≠ 𝑦) |
5 | 4 | adantl 481 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 𝑥 ≠ 𝑦) |
6 | ring1ne0.u | . . . . . . . 8 ⊢ 1 = (1r‘𝑅) | |
7 | ring1ne0.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
8 | 1, 6, 7 | ring1eq0 20187 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ( 1 = 0 → 𝑥 = 𝑦)) |
9 | 8 | necon3d 2960 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ≠ 𝑦 → 1 ≠ 0 )) |
10 | 9 | 3expib 1121 | . . . . 5 ⊢ (𝑅 ∈ Ring → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ≠ 𝑦 → 1 ≠ 0 ))) |
11 | 10 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ≠ 𝑦 → 1 ≠ 0 ))) |
12 | 11 | com3l 89 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ≠ 𝑦 → ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → 1 ≠ 0 ))) |
13 | 12 | rexlimivv 3198 | . 2 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 𝑥 ≠ 𝑦 → ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → 1 ≠ 0 )) |
14 | 5, 13 | mpcom 38 | 1 ⊢ ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → 1 ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ∃wrex 3069 Vcvv 3473 class class class wbr 5148 ‘cfv 6543 1c1 11114 < clt 11253 ♯chash 14295 Basecbs 17149 0gc0g 17390 1rcur 20076 Ringcrg 20128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-card 9937 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-n0 12478 df-xnn0 12550 df-z 12564 df-uz 12828 df-fz 13490 df-hash 14296 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-plusg 17215 df-0g 17392 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-grp 18859 df-minusg 18860 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 |
This theorem is referenced by: isnzr2hash 20411 01eq0ringOLD 20421 el0ldep 47235 |
Copyright terms: Public domain | W3C validator |