Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ring1ne0 Structured version   Visualization version   GIF version

Theorem ring1ne0 18945
 Description: If a ring has at least two elements, its one and zero are different. (Contributed by AV, 13-Apr-2019.)
Hypotheses
Ref Expression
ring1ne0.b 𝐵 = (Base‘𝑅)
ring1ne0.u 1 = (1r𝑅)
ring1ne0.z 0 = (0g𝑅)
Assertion
Ref Expression
ring1ne0 ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → 10 )

Proof of Theorem ring1ne0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ring1ne0.b . . . . 5 𝐵 = (Base‘𝑅)
21fvexi 6447 . . . 4 𝐵 ∈ V
3 hashgt12el 13499 . . . 4 ((𝐵 ∈ V ∧ 1 < (♯‘𝐵)) → ∃𝑥𝐵𝑦𝐵 𝑥𝑦)
42, 3mpan 681 . . 3 (1 < (♯‘𝐵) → ∃𝑥𝐵𝑦𝐵 𝑥𝑦)
54adantl 475 . 2 ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → ∃𝑥𝐵𝑦𝐵 𝑥𝑦)
6 ring1ne0.u . . . . . . . 8 1 = (1r𝑅)
7 ring1ne0.z . . . . . . . 8 0 = (0g𝑅)
81, 6, 7ring1eq0 18944 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → ( 1 = 0𝑥 = 𝑦))
98necon3d 3020 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥𝑦10 ))
1093expib 1156 . . . . 5 (𝑅 ∈ Ring → ((𝑥𝐵𝑦𝐵) → (𝑥𝑦10 )))
1110adantr 474 . . . 4 ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → ((𝑥𝐵𝑦𝐵) → (𝑥𝑦10 )))
1211com3l 89 . . 3 ((𝑥𝐵𝑦𝐵) → (𝑥𝑦 → ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → 10 )))
1312rexlimivv 3246 . 2 (∃𝑥𝐵𝑦𝐵 𝑥𝑦 → ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → 10 ))
145, 13mpcom 38 1 ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → 10 )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   ∧ w3a 1111   = wceq 1656   ∈ wcel 2164   ≠ wne 2999  ∃wrex 3118  Vcvv 3414   class class class wbr 4873  ‘cfv 6123  1c1 10253   < clt 10391  ♯chash 13410  Basecbs 16222  0gc0g 16453  1rcur 18855  Ringcrg 18901 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-n0 11619  df-xnn0 11691  df-z 11705  df-uz 11969  df-fz 12620  df-hash 13411  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-plusg 16318  df-0g 16455  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-grp 17779  df-minusg 17780  df-mgp 18844  df-ur 18856  df-ring 18903 This theorem is referenced by:  isnzr2hash  19625  01eq0ring  19633  el0ldep  43095
 Copyright terms: Public domain W3C validator