MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expcnv Structured version   Visualization version   GIF version

Theorem expcnv 15806
Description: A sequence of powers of a complex number 𝐴 with absolute value less than 1 converges to zero. (Contributed by NM, 8-May-2006.) (Proof shortened by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
expcnv.1 (𝜑𝐴 ∈ ℂ)
expcnv.2 (𝜑 → (abs‘𝐴) < 1)
Assertion
Ref Expression
expcnv (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem expcnv
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnuz 12812 . . 3 ℕ = (ℤ‘1)
2 1zzd 12540 . . 3 ((𝜑𝐴 = 0) → 1 ∈ ℤ)
3 nn0ex 12424 . . . . 5 0 ∈ V
43mptex 7179 . . . 4 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ∈ V
54a1i 11 . . 3 ((𝜑𝐴 = 0) → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ∈ V)
6 0cnd 11143 . . 3 ((𝜑𝐴 = 0) → 0 ∈ ℂ)
7 nnnn0 12425 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
8 oveq2 7377 . . . . . . 7 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
9 eqid 2729 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))
10 ovex 7402 . . . . . . 7 (𝐴𝑘) ∈ V
118, 9, 10fvmpt 6950 . . . . . 6 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
127, 11syl 17 . . . . 5 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
13 simpr 484 . . . . . 6 ((𝜑𝐴 = 0) → 𝐴 = 0)
1413oveq1d 7384 . . . . 5 ((𝜑𝐴 = 0) → (𝐴𝑘) = (0↑𝑘))
1512, 14sylan9eqr 2786 . . . 4 (((𝜑𝐴 = 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (0↑𝑘))
16 0exp 14038 . . . . 5 (𝑘 ∈ ℕ → (0↑𝑘) = 0)
1716adantl 481 . . . 4 (((𝜑𝐴 = 0) ∧ 𝑘 ∈ ℕ) → (0↑𝑘) = 0)
1815, 17eqtrd 2764 . . 3 (((𝜑𝐴 = 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = 0)
191, 2, 5, 6, 18climconst 15485 . 2 ((𝜑𝐴 = 0) → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
20 1zzd 12540 . . . 4 ((𝜑𝐴 ≠ 0) → 1 ∈ ℤ)
21 expcnv.2 . . . . . . . . . 10 (𝜑 → (abs‘𝐴) < 1)
2221adantr 480 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (abs‘𝐴) < 1)
23 expcnv.1 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
24 absrpcl 15230 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
2523, 24sylan 580 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
2625reclt1d 12984 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → ((abs‘𝐴) < 1 ↔ 1 < (1 / (abs‘𝐴))))
2722, 26mpbid 232 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → 1 < (1 / (abs‘𝐴)))
28 1re 11150 . . . . . . . . 9 1 ∈ ℝ
2925rpreccld 12981 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → (1 / (abs‘𝐴)) ∈ ℝ+)
3029rpred 12971 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (1 / (abs‘𝐴)) ∈ ℝ)
31 difrp 12967 . . . . . . . . 9 ((1 ∈ ℝ ∧ (1 / (abs‘𝐴)) ∈ ℝ) → (1 < (1 / (abs‘𝐴)) ↔ ((1 / (abs‘𝐴)) − 1) ∈ ℝ+))
3228, 30, 31sylancr 587 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (1 < (1 / (abs‘𝐴)) ↔ ((1 / (abs‘𝐴)) − 1) ∈ ℝ+))
3327, 32mpbid 232 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((1 / (abs‘𝐴)) − 1) ∈ ℝ+)
3433rpreccld 12981 . . . . . 6 ((𝜑𝐴 ≠ 0) → (1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℝ+)
3534rpcnd 12973 . . . . 5 ((𝜑𝐴 ≠ 0) → (1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℂ)
36 divcnv 15795 . . . . 5 ((1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℂ → (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛)) ⇝ 0)
3735, 36syl 17 . . . 4 ((𝜑𝐴 ≠ 0) → (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛)) ⇝ 0)
38 nnex 12168 . . . . . 6 ℕ ∈ V
3938mptex 7179 . . . . 5 (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ∈ V
4039a1i 11 . . . 4 ((𝜑𝐴 ≠ 0) → (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ∈ V)
41 oveq2 7377 . . . . . . 7 (𝑛 = 𝑘 → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛) = ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
42 eqid 2729 . . . . . . 7 (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛)) = (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))
43 ovex 7402 . . . . . . 7 ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) ∈ V
4441, 42, 43fvmpt 6950 . . . . . 6 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘) = ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
4544adantl 481 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘) = ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
4634rpred 12971 . . . . . 6 ((𝜑𝐴 ≠ 0) → (1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℝ)
47 nndivre 12203 . . . . . 6 (((1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) ∈ ℝ)
4846, 47sylan 580 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) ∈ ℝ)
4945, 48eqeltrd 2828 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘) ∈ ℝ)
50 oveq2 7377 . . . . . . . 8 (𝑛 = 𝑘 → ((abs‘𝐴)↑𝑛) = ((abs‘𝐴)↑𝑘))
51 eqid 2729 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) = (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))
52 ovex 7402 . . . . . . . 8 ((abs‘𝐴)↑𝑘) ∈ V
5350, 51, 52fvmpt 6950 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
5453adantl 481 . . . . . 6 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
55 nnz 12526 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
56 rpexpcl 14021 . . . . . . 7 (((abs‘𝐴) ∈ ℝ+𝑘 ∈ ℤ) → ((abs‘𝐴)↑𝑘) ∈ ℝ+)
5725, 55, 56syl2an 596 . . . . . 6 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ∈ ℝ+)
5854, 57eqeltrd 2828 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ∈ ℝ+)
5958rpred 12971 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ∈ ℝ)
60 nnrp 12939 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
61 rpmulcl 12952 . . . . . . . 8 ((((1 / (abs‘𝐴)) − 1) ∈ ℝ+𝑘 ∈ ℝ+) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ+)
6233, 60, 61syl2an 596 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ+)
6362rpred 12971 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ)
64 peano2re 11323 . . . . . . . . . 10 ((((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ∈ ℝ)
6563, 64syl 17 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ∈ ℝ)
66 rpexpcl 14021 . . . . . . . . . . 11 (((1 / (abs‘𝐴)) ∈ ℝ+𝑘 ∈ ℤ) → ((1 / (abs‘𝐴))↑𝑘) ∈ ℝ+)
6729, 55, 66syl2an 596 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((1 / (abs‘𝐴))↑𝑘) ∈ ℝ+)
6867rpred 12971 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((1 / (abs‘𝐴))↑𝑘) ∈ ℝ)
6963lep1d 12090 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ≤ ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1))
7030adantr 480 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → (1 / (abs‘𝐴)) ∈ ℝ)
717adantl 481 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
7229rpge0d 12975 . . . . . . . . . . 11 ((𝜑𝐴 ≠ 0) → 0 ≤ (1 / (abs‘𝐴)))
7372adantr 480 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → 0 ≤ (1 / (abs‘𝐴)))
74 bernneq2 14171 . . . . . . . . . 10 (((1 / (abs‘𝐴)) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ (1 / (abs‘𝐴))) → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ≤ ((1 / (abs‘𝐴))↑𝑘))
7570, 71, 73, 74syl3anc 1373 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ≤ ((1 / (abs‘𝐴))↑𝑘))
7663, 65, 68, 69, 75letrd 11307 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ≤ ((1 / (abs‘𝐴))↑𝑘))
7725rpcnne0d 12980 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → ((abs‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ≠ 0))
78 exprec 14044 . . . . . . . . . 10 (((abs‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ≠ 0 ∧ 𝑘 ∈ ℤ) → ((1 / (abs‘𝐴))↑𝑘) = (1 / ((abs‘𝐴)↑𝑘)))
79783expa 1118 . . . . . . . . 9 ((((abs‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ≠ 0) ∧ 𝑘 ∈ ℤ) → ((1 / (abs‘𝐴))↑𝑘) = (1 / ((abs‘𝐴)↑𝑘)))
8077, 55, 79syl2an 596 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((1 / (abs‘𝐴))↑𝑘) = (1 / ((abs‘𝐴)↑𝑘)))
8176, 80breqtrd 5128 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ≤ (1 / ((abs‘𝐴)↑𝑘)))
8262, 57, 81lerec2d 12992 . . . . . 6 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ≤ (1 / (((1 / (abs‘𝐴)) − 1) · 𝑘)))
8333rpcnne0d 12980 . . . . . . 7 ((𝜑𝐴 ≠ 0) → (((1 / (abs‘𝐴)) − 1) ∈ ℂ ∧ ((1 / (abs‘𝐴)) − 1) ≠ 0))
84 nncn 12170 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
85 nnne0 12196 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
8684, 85jca 511 . . . . . . 7 (𝑘 ∈ ℕ → (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0))
87 recdiv2 11871 . . . . . . 7 (((((1 / (abs‘𝐴)) − 1) ∈ ℂ ∧ ((1 / (abs‘𝐴)) − 1) ≠ 0) ∧ (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0)) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) = (1 / (((1 / (abs‘𝐴)) − 1) · 𝑘)))
8883, 86, 87syl2an 596 . . . . . 6 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) = (1 / (((1 / (abs‘𝐴)) − 1) · 𝑘)))
8982, 88breqtrrd 5130 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ≤ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
9089, 54, 453brtr4d 5134 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘))
9158rpge0d 12975 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘))
921, 20, 37, 40, 49, 59, 90, 91climsqz2 15584 . . 3 ((𝜑𝐴 ≠ 0) → (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0)
93 1zzd 12540 . . . . 5 (𝜑 → 1 ∈ ℤ)
944a1i 11 . . . . 5 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ∈ V)
9539a1i 11 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ∈ V)
967adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
9796, 11syl 17 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
98 expcl 14020 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
9923, 7, 98syl2an 596 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℂ)
10097, 99eqeltrd 2828 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) ∈ ℂ)
101 absexp 15246 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
10223, 7, 101syl2an 596 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
10397fveq2d 6844 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (abs‘((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘)) = (abs‘(𝐴𝑘)))
10453adantl 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
105102, 103, 1043eqtr4rd 2775 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = (abs‘((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘)))
1061, 93, 94, 95, 100, 105climabs0 15527 . . . 4 (𝜑 → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0 ↔ (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0))
107106biimpar 477 . . 3 ((𝜑 ∧ (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0) → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
10892, 107syldan 591 . 2 ((𝜑𝐴 ≠ 0) → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
10919, 108pm2.61dane 3012 1 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  0cn0 12418  cz 12505  +crp 12927  cexp 14002  abscabs 15176  cli 15426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fl 13730  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431
This theorem is referenced by:  explecnv  15807  geolim  15812  geo2lim  15817  iscmet3lem3  25223  mbfi1fseqlem6  25654  geomcau  37746  stoweidlem7  45998
  Copyright terms: Public domain W3C validator