MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expcnv Structured version   Visualization version   GIF version

Theorem expcnv 15213
Description: A sequence of powers of a complex number 𝐴 with absolute value smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.) (Proof shortened by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
expcnv.1 (𝜑𝐴 ∈ ℂ)
expcnv.2 (𝜑 → (abs‘𝐴) < 1)
Assertion
Ref Expression
expcnv (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem expcnv
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnuz 12275 . . 3 ℕ = (ℤ‘1)
2 1zzd 12007 . . 3 ((𝜑𝐴 = 0) → 1 ∈ ℤ)
3 nn0ex 11897 . . . . 5 0 ∈ V
43mptex 6980 . . . 4 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ∈ V
54a1i 11 . . 3 ((𝜑𝐴 = 0) → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ∈ V)
6 0cnd 10628 . . 3 ((𝜑𝐴 = 0) → 0 ∈ ℂ)
7 nnnn0 11898 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
8 oveq2 7158 . . . . . . 7 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
9 eqid 2821 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))
10 ovex 7183 . . . . . . 7 (𝐴𝑘) ∈ V
118, 9, 10fvmpt 6762 . . . . . 6 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
127, 11syl 17 . . . . 5 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
13 simpr 487 . . . . . 6 ((𝜑𝐴 = 0) → 𝐴 = 0)
1413oveq1d 7165 . . . . 5 ((𝜑𝐴 = 0) → (𝐴𝑘) = (0↑𝑘))
1512, 14sylan9eqr 2878 . . . 4 (((𝜑𝐴 = 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (0↑𝑘))
16 0exp 13458 . . . . 5 (𝑘 ∈ ℕ → (0↑𝑘) = 0)
1716adantl 484 . . . 4 (((𝜑𝐴 = 0) ∧ 𝑘 ∈ ℕ) → (0↑𝑘) = 0)
1815, 17eqtrd 2856 . . 3 (((𝜑𝐴 = 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = 0)
191, 2, 5, 6, 18climconst 14894 . 2 ((𝜑𝐴 = 0) → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
20 1zzd 12007 . . . 4 ((𝜑𝐴 ≠ 0) → 1 ∈ ℤ)
21 expcnv.2 . . . . . . . . . 10 (𝜑 → (abs‘𝐴) < 1)
2221adantr 483 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (abs‘𝐴) < 1)
23 expcnv.1 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
24 absrpcl 14642 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
2523, 24sylan 582 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
2625reclt1d 12438 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → ((abs‘𝐴) < 1 ↔ 1 < (1 / (abs‘𝐴))))
2722, 26mpbid 234 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → 1 < (1 / (abs‘𝐴)))
28 1re 10635 . . . . . . . . 9 1 ∈ ℝ
2925rpreccld 12435 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → (1 / (abs‘𝐴)) ∈ ℝ+)
3029rpred 12425 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (1 / (abs‘𝐴)) ∈ ℝ)
31 difrp 12421 . . . . . . . . 9 ((1 ∈ ℝ ∧ (1 / (abs‘𝐴)) ∈ ℝ) → (1 < (1 / (abs‘𝐴)) ↔ ((1 / (abs‘𝐴)) − 1) ∈ ℝ+))
3228, 30, 31sylancr 589 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (1 < (1 / (abs‘𝐴)) ↔ ((1 / (abs‘𝐴)) − 1) ∈ ℝ+))
3327, 32mpbid 234 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((1 / (abs‘𝐴)) − 1) ∈ ℝ+)
3433rpreccld 12435 . . . . . 6 ((𝜑𝐴 ≠ 0) → (1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℝ+)
3534rpcnd 12427 . . . . 5 ((𝜑𝐴 ≠ 0) → (1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℂ)
36 divcnv 15202 . . . . 5 ((1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℂ → (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛)) ⇝ 0)
3735, 36syl 17 . . . 4 ((𝜑𝐴 ≠ 0) → (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛)) ⇝ 0)
38 nnex 11638 . . . . . 6 ℕ ∈ V
3938mptex 6980 . . . . 5 (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ∈ V
4039a1i 11 . . . 4 ((𝜑𝐴 ≠ 0) → (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ∈ V)
41 oveq2 7158 . . . . . . 7 (𝑛 = 𝑘 → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛) = ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
42 eqid 2821 . . . . . . 7 (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛)) = (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))
43 ovex 7183 . . . . . . 7 ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) ∈ V
4441, 42, 43fvmpt 6762 . . . . . 6 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘) = ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
4544adantl 484 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘) = ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
4634rpred 12425 . . . . . 6 ((𝜑𝐴 ≠ 0) → (1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℝ)
47 nndivre 11672 . . . . . 6 (((1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) ∈ ℝ)
4846, 47sylan 582 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) ∈ ℝ)
4945, 48eqeltrd 2913 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘) ∈ ℝ)
50 oveq2 7158 . . . . . . . 8 (𝑛 = 𝑘 → ((abs‘𝐴)↑𝑛) = ((abs‘𝐴)↑𝑘))
51 eqid 2821 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) = (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))
52 ovex 7183 . . . . . . . 8 ((abs‘𝐴)↑𝑘) ∈ V
5350, 51, 52fvmpt 6762 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
5453adantl 484 . . . . . 6 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
55 nnz 11998 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
56 rpexpcl 13442 . . . . . . 7 (((abs‘𝐴) ∈ ℝ+𝑘 ∈ ℤ) → ((abs‘𝐴)↑𝑘) ∈ ℝ+)
5725, 55, 56syl2an 597 . . . . . 6 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ∈ ℝ+)
5854, 57eqeltrd 2913 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ∈ ℝ+)
5958rpred 12425 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ∈ ℝ)
60 nnrp 12394 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
61 rpmulcl 12406 . . . . . . . 8 ((((1 / (abs‘𝐴)) − 1) ∈ ℝ+𝑘 ∈ ℝ+) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ+)
6233, 60, 61syl2an 597 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ+)
6362rpred 12425 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ)
64 peano2re 10807 . . . . . . . . . 10 ((((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ∈ ℝ)
6563, 64syl 17 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ∈ ℝ)
66 rpexpcl 13442 . . . . . . . . . . 11 (((1 / (abs‘𝐴)) ∈ ℝ+𝑘 ∈ ℤ) → ((1 / (abs‘𝐴))↑𝑘) ∈ ℝ+)
6729, 55, 66syl2an 597 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((1 / (abs‘𝐴))↑𝑘) ∈ ℝ+)
6867rpred 12425 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((1 / (abs‘𝐴))↑𝑘) ∈ ℝ)
6963lep1d 11565 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ≤ ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1))
7030adantr 483 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → (1 / (abs‘𝐴)) ∈ ℝ)
717adantl 484 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
7229rpge0d 12429 . . . . . . . . . . 11 ((𝜑𝐴 ≠ 0) → 0 ≤ (1 / (abs‘𝐴)))
7372adantr 483 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → 0 ≤ (1 / (abs‘𝐴)))
74 bernneq2 13585 . . . . . . . . . 10 (((1 / (abs‘𝐴)) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ (1 / (abs‘𝐴))) → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ≤ ((1 / (abs‘𝐴))↑𝑘))
7570, 71, 73, 74syl3anc 1367 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ≤ ((1 / (abs‘𝐴))↑𝑘))
7663, 65, 68, 69, 75letrd 10791 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ≤ ((1 / (abs‘𝐴))↑𝑘))
7725rpcnne0d 12434 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → ((abs‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ≠ 0))
78 exprec 13464 . . . . . . . . . 10 (((abs‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ≠ 0 ∧ 𝑘 ∈ ℤ) → ((1 / (abs‘𝐴))↑𝑘) = (1 / ((abs‘𝐴)↑𝑘)))
79783expa 1114 . . . . . . . . 9 ((((abs‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ≠ 0) ∧ 𝑘 ∈ ℤ) → ((1 / (abs‘𝐴))↑𝑘) = (1 / ((abs‘𝐴)↑𝑘)))
8077, 55, 79syl2an 597 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((1 / (abs‘𝐴))↑𝑘) = (1 / ((abs‘𝐴)↑𝑘)))
8176, 80breqtrd 5084 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ≤ (1 / ((abs‘𝐴)↑𝑘)))
8262, 57, 81lerec2d 12446 . . . . . 6 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ≤ (1 / (((1 / (abs‘𝐴)) − 1) · 𝑘)))
8333rpcnne0d 12434 . . . . . . 7 ((𝜑𝐴 ≠ 0) → (((1 / (abs‘𝐴)) − 1) ∈ ℂ ∧ ((1 / (abs‘𝐴)) − 1) ≠ 0))
84 nncn 11640 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
85 nnne0 11665 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
8684, 85jca 514 . . . . . . 7 (𝑘 ∈ ℕ → (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0))
87 recdiv2 11347 . . . . . . 7 (((((1 / (abs‘𝐴)) − 1) ∈ ℂ ∧ ((1 / (abs‘𝐴)) − 1) ≠ 0) ∧ (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0)) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) = (1 / (((1 / (abs‘𝐴)) − 1) · 𝑘)))
8883, 86, 87syl2an 597 . . . . . 6 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) = (1 / (((1 / (abs‘𝐴)) − 1) · 𝑘)))
8982, 88breqtrrd 5086 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ≤ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
9089, 54, 453brtr4d 5090 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘))
9158rpge0d 12429 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘))
921, 20, 37, 40, 49, 59, 90, 91climsqz2 14992 . . 3 ((𝜑𝐴 ≠ 0) → (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0)
93 1zzd 12007 . . . . 5 (𝜑 → 1 ∈ ℤ)
944a1i 11 . . . . 5 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ∈ V)
9539a1i 11 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ∈ V)
967adantl 484 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
9796, 11syl 17 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
98 expcl 13441 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
9923, 7, 98syl2an 597 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℂ)
10097, 99eqeltrd 2913 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) ∈ ℂ)
101 absexp 14658 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
10223, 7, 101syl2an 597 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
10397fveq2d 6668 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (abs‘((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘)) = (abs‘(𝐴𝑘)))
10453adantl 484 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
105102, 103, 1043eqtr4rd 2867 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = (abs‘((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘)))
1061, 93, 94, 95, 100, 105climabs0 14936 . . . 4 (𝜑 → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0 ↔ (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0))
107106biimpar 480 . . 3 ((𝜑 ∧ (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0) → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
10892, 107syldan 593 . 2 ((𝜑𝐴 ≠ 0) → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
10919, 108pm2.61dane 3104 1 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  Vcvv 3494   class class class wbr 5058  cmpt 5138  cfv 6349  (class class class)co 7150  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536   < clt 10669  cle 10670  cmin 10864   / cdiv 11291  cn 11632  0cn0 11891  cz 11975  +crp 12383  cexp 13423  abscabs 14587  cli 14835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fl 13156  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-rlim 14840
This theorem is referenced by:  explecnv  15214  geolim  15220  geo2lim  15225  iscmet3lem3  23887  mbfi1fseqlem6  24315  geomcau  35028  stoweidlem7  42286
  Copyright terms: Public domain W3C validator