MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expcnv Structured version   Visualization version   GIF version

Theorem expcnv 15771
Description: A sequence of powers of a complex number 𝐴 with absolute value less than 1 converges to zero. (Contributed by NM, 8-May-2006.) (Proof shortened by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
expcnv.1 (𝜑𝐴 ∈ ℂ)
expcnv.2 (𝜑 → (abs‘𝐴) < 1)
Assertion
Ref Expression
expcnv (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem expcnv
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnuz 12778 . . 3 ℕ = (ℤ‘1)
2 1zzd 12506 . . 3 ((𝜑𝐴 = 0) → 1 ∈ ℤ)
3 nn0ex 12390 . . . . 5 0 ∈ V
43mptex 7159 . . . 4 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ∈ V
54a1i 11 . . 3 ((𝜑𝐴 = 0) → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ∈ V)
6 0cnd 11108 . . 3 ((𝜑𝐴 = 0) → 0 ∈ ℂ)
7 nnnn0 12391 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
8 oveq2 7357 . . . . . . 7 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
9 eqid 2729 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))
10 ovex 7382 . . . . . . 7 (𝐴𝑘) ∈ V
118, 9, 10fvmpt 6930 . . . . . 6 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
127, 11syl 17 . . . . 5 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
13 simpr 484 . . . . . 6 ((𝜑𝐴 = 0) → 𝐴 = 0)
1413oveq1d 7364 . . . . 5 ((𝜑𝐴 = 0) → (𝐴𝑘) = (0↑𝑘))
1512, 14sylan9eqr 2786 . . . 4 (((𝜑𝐴 = 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (0↑𝑘))
16 0exp 14004 . . . . 5 (𝑘 ∈ ℕ → (0↑𝑘) = 0)
1716adantl 481 . . . 4 (((𝜑𝐴 = 0) ∧ 𝑘 ∈ ℕ) → (0↑𝑘) = 0)
1815, 17eqtrd 2764 . . 3 (((𝜑𝐴 = 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = 0)
191, 2, 5, 6, 18climconst 15450 . 2 ((𝜑𝐴 = 0) → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
20 1zzd 12506 . . . 4 ((𝜑𝐴 ≠ 0) → 1 ∈ ℤ)
21 expcnv.2 . . . . . . . . . 10 (𝜑 → (abs‘𝐴) < 1)
2221adantr 480 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (abs‘𝐴) < 1)
23 expcnv.1 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
24 absrpcl 15195 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
2523, 24sylan 580 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
2625reclt1d 12950 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → ((abs‘𝐴) < 1 ↔ 1 < (1 / (abs‘𝐴))))
2722, 26mpbid 232 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → 1 < (1 / (abs‘𝐴)))
28 1re 11115 . . . . . . . . 9 1 ∈ ℝ
2925rpreccld 12947 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → (1 / (abs‘𝐴)) ∈ ℝ+)
3029rpred 12937 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (1 / (abs‘𝐴)) ∈ ℝ)
31 difrp 12933 . . . . . . . . 9 ((1 ∈ ℝ ∧ (1 / (abs‘𝐴)) ∈ ℝ) → (1 < (1 / (abs‘𝐴)) ↔ ((1 / (abs‘𝐴)) − 1) ∈ ℝ+))
3228, 30, 31sylancr 587 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (1 < (1 / (abs‘𝐴)) ↔ ((1 / (abs‘𝐴)) − 1) ∈ ℝ+))
3327, 32mpbid 232 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((1 / (abs‘𝐴)) − 1) ∈ ℝ+)
3433rpreccld 12947 . . . . . 6 ((𝜑𝐴 ≠ 0) → (1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℝ+)
3534rpcnd 12939 . . . . 5 ((𝜑𝐴 ≠ 0) → (1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℂ)
36 divcnv 15760 . . . . 5 ((1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℂ → (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛)) ⇝ 0)
3735, 36syl 17 . . . 4 ((𝜑𝐴 ≠ 0) → (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛)) ⇝ 0)
38 nnex 12134 . . . . . 6 ℕ ∈ V
3938mptex 7159 . . . . 5 (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ∈ V
4039a1i 11 . . . 4 ((𝜑𝐴 ≠ 0) → (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ∈ V)
41 oveq2 7357 . . . . . . 7 (𝑛 = 𝑘 → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛) = ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
42 eqid 2729 . . . . . . 7 (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛)) = (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))
43 ovex 7382 . . . . . . 7 ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) ∈ V
4441, 42, 43fvmpt 6930 . . . . . 6 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘) = ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
4544adantl 481 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘) = ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
4634rpred 12937 . . . . . 6 ((𝜑𝐴 ≠ 0) → (1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℝ)
47 nndivre 12169 . . . . . 6 (((1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) ∈ ℝ)
4846, 47sylan 580 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) ∈ ℝ)
4945, 48eqeltrd 2828 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘) ∈ ℝ)
50 oveq2 7357 . . . . . . . 8 (𝑛 = 𝑘 → ((abs‘𝐴)↑𝑛) = ((abs‘𝐴)↑𝑘))
51 eqid 2729 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) = (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))
52 ovex 7382 . . . . . . . 8 ((abs‘𝐴)↑𝑘) ∈ V
5350, 51, 52fvmpt 6930 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
5453adantl 481 . . . . . 6 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
55 nnz 12492 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
56 rpexpcl 13987 . . . . . . 7 (((abs‘𝐴) ∈ ℝ+𝑘 ∈ ℤ) → ((abs‘𝐴)↑𝑘) ∈ ℝ+)
5725, 55, 56syl2an 596 . . . . . 6 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ∈ ℝ+)
5854, 57eqeltrd 2828 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ∈ ℝ+)
5958rpred 12937 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ∈ ℝ)
60 nnrp 12905 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
61 rpmulcl 12918 . . . . . . . 8 ((((1 / (abs‘𝐴)) − 1) ∈ ℝ+𝑘 ∈ ℝ+) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ+)
6233, 60, 61syl2an 596 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ+)
6362rpred 12937 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ)
64 peano2re 11289 . . . . . . . . . 10 ((((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ∈ ℝ)
6563, 64syl 17 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ∈ ℝ)
66 rpexpcl 13987 . . . . . . . . . . 11 (((1 / (abs‘𝐴)) ∈ ℝ+𝑘 ∈ ℤ) → ((1 / (abs‘𝐴))↑𝑘) ∈ ℝ+)
6729, 55, 66syl2an 596 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((1 / (abs‘𝐴))↑𝑘) ∈ ℝ+)
6867rpred 12937 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((1 / (abs‘𝐴))↑𝑘) ∈ ℝ)
6963lep1d 12056 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ≤ ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1))
7030adantr 480 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → (1 / (abs‘𝐴)) ∈ ℝ)
717adantl 481 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
7229rpge0d 12941 . . . . . . . . . . 11 ((𝜑𝐴 ≠ 0) → 0 ≤ (1 / (abs‘𝐴)))
7372adantr 480 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → 0 ≤ (1 / (abs‘𝐴)))
74 bernneq2 14137 . . . . . . . . . 10 (((1 / (abs‘𝐴)) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ (1 / (abs‘𝐴))) → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ≤ ((1 / (abs‘𝐴))↑𝑘))
7570, 71, 73, 74syl3anc 1373 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ≤ ((1 / (abs‘𝐴))↑𝑘))
7663, 65, 68, 69, 75letrd 11273 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ≤ ((1 / (abs‘𝐴))↑𝑘))
7725rpcnne0d 12946 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → ((abs‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ≠ 0))
78 exprec 14010 . . . . . . . . . 10 (((abs‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ≠ 0 ∧ 𝑘 ∈ ℤ) → ((1 / (abs‘𝐴))↑𝑘) = (1 / ((abs‘𝐴)↑𝑘)))
79783expa 1118 . . . . . . . . 9 ((((abs‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ≠ 0) ∧ 𝑘 ∈ ℤ) → ((1 / (abs‘𝐴))↑𝑘) = (1 / ((abs‘𝐴)↑𝑘)))
8077, 55, 79syl2an 596 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((1 / (abs‘𝐴))↑𝑘) = (1 / ((abs‘𝐴)↑𝑘)))
8176, 80breqtrd 5118 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ≤ (1 / ((abs‘𝐴)↑𝑘)))
8262, 57, 81lerec2d 12958 . . . . . 6 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ≤ (1 / (((1 / (abs‘𝐴)) − 1) · 𝑘)))
8333rpcnne0d 12946 . . . . . . 7 ((𝜑𝐴 ≠ 0) → (((1 / (abs‘𝐴)) − 1) ∈ ℂ ∧ ((1 / (abs‘𝐴)) − 1) ≠ 0))
84 nncn 12136 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
85 nnne0 12162 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
8684, 85jca 511 . . . . . . 7 (𝑘 ∈ ℕ → (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0))
87 recdiv2 11837 . . . . . . 7 (((((1 / (abs‘𝐴)) − 1) ∈ ℂ ∧ ((1 / (abs‘𝐴)) − 1) ≠ 0) ∧ (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0)) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) = (1 / (((1 / (abs‘𝐴)) − 1) · 𝑘)))
8883, 86, 87syl2an 596 . . . . . 6 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) = (1 / (((1 / (abs‘𝐴)) − 1) · 𝑘)))
8982, 88breqtrrd 5120 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ≤ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
9089, 54, 453brtr4d 5124 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘))
9158rpge0d 12941 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘))
921, 20, 37, 40, 49, 59, 90, 91climsqz2 15549 . . 3 ((𝜑𝐴 ≠ 0) → (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0)
93 1zzd 12506 . . . . 5 (𝜑 → 1 ∈ ℤ)
944a1i 11 . . . . 5 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ∈ V)
9539a1i 11 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ∈ V)
967adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
9796, 11syl 17 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
98 expcl 13986 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
9923, 7, 98syl2an 596 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℂ)
10097, 99eqeltrd 2828 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) ∈ ℂ)
101 absexp 15211 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
10223, 7, 101syl2an 596 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
10397fveq2d 6826 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (abs‘((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘)) = (abs‘(𝐴𝑘)))
10453adantl 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
105102, 103, 1043eqtr4rd 2775 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = (abs‘((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘)))
1061, 93, 94, 95, 100, 105climabs0 15492 . . . 4 (𝜑 → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0 ↔ (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0))
107106biimpar 477 . . 3 ((𝜑 ∧ (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0) → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
10892, 107syldan 591 . 2 ((𝜑𝐴 ≠ 0) → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
10919, 108pm2.61dane 3012 1 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3436   class class class wbr 5092  cmpt 5173  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014   < clt 11149  cle 11150  cmin 11347   / cdiv 11777  cn 12128  0cn0 12384  cz 12471  +crp 12893  cexp 13968  abscabs 15141  cli 15391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fl 13696  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396
This theorem is referenced by:  explecnv  15772  geolim  15777  geo2lim  15782  iscmet3lem3  25188  mbfi1fseqlem6  25619  geomcau  37743  stoweidlem7  45992
  Copyright terms: Public domain W3C validator