Step | Hyp | Ref
| Expression |
1 | | nnuz 12550 |
. . 3
⊢ ℕ =
(ℤ≥‘1) |
2 | | 1zzd 12281 |
. . 3
⊢ ((𝜑 ∧ 𝐴 = 0) → 1 ∈
ℤ) |
3 | | nn0ex 12169 |
. . . . 5
⊢
ℕ0 ∈ V |
4 | 3 | mptex 7081 |
. . . 4
⊢ (𝑛 ∈ ℕ0
↦ (𝐴↑𝑛)) ∈ V |
5 | 4 | a1i 11 |
. . 3
⊢ ((𝜑 ∧ 𝐴 = 0) → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ∈ V) |
6 | | 0cnd 10899 |
. . 3
⊢ ((𝜑 ∧ 𝐴 = 0) → 0 ∈
ℂ) |
7 | | nnnn0 12170 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ0) |
8 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → (𝐴↑𝑛) = (𝐴↑𝑘)) |
9 | | eqid 2738 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ0
↦ (𝐴↑𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) |
10 | | ovex 7288 |
. . . . . . 7
⊢ (𝐴↑𝑘) ∈ V |
11 | 8, 9, 10 | fvmpt 6857 |
. . . . . 6
⊢ (𝑘 ∈ ℕ0
→ ((𝑛 ∈
ℕ0 ↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) |
12 | 7, 11 | syl 17 |
. . . . 5
⊢ (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ0
↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) |
13 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 = 0) → 𝐴 = 0) |
14 | 13 | oveq1d 7270 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 = 0) → (𝐴↑𝑘) = (0↑𝑘)) |
15 | 12, 14 | sylan9eqr 2801 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 = 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))‘𝑘) = (0↑𝑘)) |
16 | | 0exp 13746 |
. . . . 5
⊢ (𝑘 ∈ ℕ →
(0↑𝑘) =
0) |
17 | 16 | adantl 481 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 = 0) ∧ 𝑘 ∈ ℕ) → (0↑𝑘) = 0) |
18 | 15, 17 | eqtrd 2778 |
. . 3
⊢ (((𝜑 ∧ 𝐴 = 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))‘𝑘) = 0) |
19 | 1, 2, 5, 6, 18 | climconst 15180 |
. 2
⊢ ((𝜑 ∧ 𝐴 = 0) → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ⇝ 0) |
20 | | 1zzd 12281 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → 1 ∈
ℤ) |
21 | | expcnv.2 |
. . . . . . . . . 10
⊢ (𝜑 → (abs‘𝐴) < 1) |
22 | 21 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (abs‘𝐴) < 1) |
23 | | expcnv.1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ ℂ) |
24 | | absrpcl 14928 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈
ℝ+) |
25 | 23, 24 | sylan 579 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈
ℝ+) |
26 | 25 | reclt1d 12714 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → ((abs‘𝐴) < 1 ↔ 1 < (1 /
(abs‘𝐴)))) |
27 | 22, 26 | mpbid 231 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → 1 < (1 / (abs‘𝐴))) |
28 | | 1re 10906 |
. . . . . . . . 9
⊢ 1 ∈
ℝ |
29 | 25 | rpreccld 12711 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (1 / (abs‘𝐴)) ∈
ℝ+) |
30 | 29 | rpred 12701 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (1 / (abs‘𝐴)) ∈
ℝ) |
31 | | difrp 12697 |
. . . . . . . . 9
⊢ ((1
∈ ℝ ∧ (1 / (abs‘𝐴)) ∈ ℝ) → (1 < (1 /
(abs‘𝐴)) ↔ ((1 /
(abs‘𝐴)) − 1)
∈ ℝ+)) |
32 | 28, 30, 31 | sylancr 586 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (1 < (1 /
(abs‘𝐴)) ↔ ((1 /
(abs‘𝐴)) − 1)
∈ ℝ+)) |
33 | 27, 32 | mpbid 231 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → ((1 / (abs‘𝐴)) − 1) ∈
ℝ+) |
34 | 33 | rpreccld 12711 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (1 / ((1 / (abs‘𝐴)) − 1)) ∈
ℝ+) |
35 | 34 | rpcnd 12703 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (1 / ((1 / (abs‘𝐴)) − 1)) ∈
ℂ) |
36 | | divcnv 15493 |
. . . . 5
⊢ ((1 / ((1
/ (abs‘𝐴)) −
1)) ∈ ℂ → (𝑛 ∈ ℕ ↦ ((1 / ((1 /
(abs‘𝐴)) − 1))
/ 𝑛)) ⇝
0) |
37 | 35, 36 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (𝑛 ∈ ℕ ↦ ((1 / ((1 /
(abs‘𝐴)) − 1))
/ 𝑛)) ⇝
0) |
38 | | nnex 11909 |
. . . . . 6
⊢ ℕ
∈ V |
39 | 38 | mptex 7081 |
. . . . 5
⊢ (𝑛 ∈ ℕ ↦
((abs‘𝐴)↑𝑛)) ∈ V |
40 | 39 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ∈ V) |
41 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛) = ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘)) |
42 | | eqid 2738 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ ↦ ((1 /
((1 / (abs‘𝐴))
− 1)) / 𝑛)) = (𝑛 ∈ ℕ ↦ ((1 /
((1 / (abs‘𝐴))
− 1)) / 𝑛)) |
43 | | ovex 7288 |
. . . . . . 7
⊢ ((1 / ((1
/ (abs‘𝐴)) −
1)) / 𝑘) ∈
V |
44 | 41, 42, 43 | fvmpt 6857 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((1 /
((1 / (abs‘𝐴))
− 1)) / 𝑛))‘𝑘) = ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘)) |
45 | 44 | adantl 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / ((1 /
(abs‘𝐴)) − 1))
/ 𝑛))‘𝑘) = ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘)) |
46 | 34 | rpred 12701 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (1 / ((1 / (abs‘𝐴)) − 1)) ∈
ℝ) |
47 | | nndivre 11944 |
. . . . . 6
⊢ (((1 /
((1 / (abs‘𝐴))
− 1)) ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((1 / ((1 /
(abs‘𝐴)) − 1))
/ 𝑘) ∈
ℝ) |
48 | 46, 47 | sylan 579 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((1 / ((1 /
(abs‘𝐴)) − 1))
/ 𝑘) ∈
ℝ) |
49 | 45, 48 | eqeltrd 2839 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / ((1 /
(abs‘𝐴)) − 1))
/ 𝑛))‘𝑘) ∈
ℝ) |
50 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → ((abs‘𝐴)↑𝑛) = ((abs‘𝐴)↑𝑘)) |
51 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ ↦
((abs‘𝐴)↑𝑛)) = (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) |
52 | | ovex 7288 |
. . . . . . . 8
⊢
((abs‘𝐴)↑𝑘) ∈ V |
53 | 50, 51, 52 | fvmpt 6857 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦
((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘)) |
54 | 53 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘)) |
55 | | nnz 12272 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℤ) |
56 | | rpexpcl 13729 |
. . . . . . 7
⊢
(((abs‘𝐴)
∈ ℝ+ ∧ 𝑘 ∈ ℤ) → ((abs‘𝐴)↑𝑘) ∈
ℝ+) |
57 | 25, 55, 56 | syl2an 595 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ∈
ℝ+) |
58 | 54, 57 | eqeltrd 2839 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ∈
ℝ+) |
59 | 58 | rpred 12701 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ∈ ℝ) |
60 | | nnrp 12670 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ+) |
61 | | rpmulcl 12682 |
. . . . . . . 8
⊢ ((((1 /
(abs‘𝐴)) − 1)
∈ ℝ+ ∧ 𝑘 ∈ ℝ+) → (((1 /
(abs‘𝐴)) − 1)
· 𝑘) ∈
ℝ+) |
62 | 33, 60, 61 | syl2an 595 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → (((1 /
(abs‘𝐴)) − 1)
· 𝑘) ∈
ℝ+) |
63 | 62 | rpred 12701 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → (((1 /
(abs‘𝐴)) − 1)
· 𝑘) ∈
ℝ) |
64 | | peano2re 11078 |
. . . . . . . . . 10
⊢ ((((1 /
(abs‘𝐴)) − 1)
· 𝑘) ∈ ℝ
→ ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ∈ ℝ) |
65 | 63, 64 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((((1 /
(abs‘𝐴)) − 1)
· 𝑘) + 1) ∈
ℝ) |
66 | | rpexpcl 13729 |
. . . . . . . . . . 11
⊢ (((1 /
(abs‘𝐴)) ∈
ℝ+ ∧ 𝑘
∈ ℤ) → ((1 / (abs‘𝐴))↑𝑘) ∈
ℝ+) |
67 | 29, 55, 66 | syl2an 595 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((1 /
(abs‘𝐴))↑𝑘) ∈
ℝ+) |
68 | 67 | rpred 12701 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((1 /
(abs‘𝐴))↑𝑘) ∈
ℝ) |
69 | 63 | lep1d 11836 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → (((1 /
(abs‘𝐴)) − 1)
· 𝑘) ≤ ((((1 /
(abs‘𝐴)) − 1)
· 𝑘) +
1)) |
70 | 30 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → (1 / (abs‘𝐴)) ∈
ℝ) |
71 | 7 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0) |
72 | 29 | rpge0d 12705 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → 0 ≤ (1 / (abs‘𝐴))) |
73 | 72 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → 0 ≤ (1 /
(abs‘𝐴))) |
74 | | bernneq2 13873 |
. . . . . . . . . 10
⊢ (((1 /
(abs‘𝐴)) ∈
ℝ ∧ 𝑘 ∈
ℕ0 ∧ 0 ≤ (1 / (abs‘𝐴))) → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ≤ ((1 /
(abs‘𝐴))↑𝑘)) |
75 | 70, 71, 73, 74 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((((1 /
(abs‘𝐴)) − 1)
· 𝑘) + 1) ≤ ((1 /
(abs‘𝐴))↑𝑘)) |
76 | 63, 65, 68, 69, 75 | letrd 11062 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → (((1 /
(abs‘𝐴)) − 1)
· 𝑘) ≤ ((1 /
(abs‘𝐴))↑𝑘)) |
77 | 25 | rpcnne0d 12710 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → ((abs‘𝐴) ∈ ℂ ∧
(abs‘𝐴) ≠
0)) |
78 | | exprec 13752 |
. . . . . . . . . 10
⊢
(((abs‘𝐴)
∈ ℂ ∧ (abs‘𝐴) ≠ 0 ∧ 𝑘 ∈ ℤ) → ((1 /
(abs‘𝐴))↑𝑘) = (1 / ((abs‘𝐴)↑𝑘))) |
79 | 78 | 3expa 1116 |
. . . . . . . . 9
⊢
((((abs‘𝐴)
∈ ℂ ∧ (abs‘𝐴) ≠ 0) ∧ 𝑘 ∈ ℤ) → ((1 /
(abs‘𝐴))↑𝑘) = (1 / ((abs‘𝐴)↑𝑘))) |
80 | 77, 55, 79 | syl2an 595 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((1 /
(abs‘𝐴))↑𝑘) = (1 / ((abs‘𝐴)↑𝑘))) |
81 | 76, 80 | breqtrd 5096 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → (((1 /
(abs‘𝐴)) − 1)
· 𝑘) ≤ (1 /
((abs‘𝐴)↑𝑘))) |
82 | 62, 57, 81 | lerec2d 12722 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ≤ (1 / (((1 / (abs‘𝐴)) − 1) · 𝑘))) |
83 | 33 | rpcnne0d 12710 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (((1 / (abs‘𝐴)) − 1) ∈ ℂ
∧ ((1 / (abs‘𝐴))
− 1) ≠ 0)) |
84 | | nncn 11911 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℂ) |
85 | | nnne0 11937 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → 𝑘 ≠ 0) |
86 | 84, 85 | jca 511 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0)) |
87 | | recdiv2 11618 |
. . . . . . 7
⊢ (((((1 /
(abs‘𝐴)) − 1)
∈ ℂ ∧ ((1 / (abs‘𝐴)) − 1) ≠ 0) ∧ (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0)) → ((1 / ((1 /
(abs‘𝐴)) − 1))
/ 𝑘) = (1 / (((1 /
(abs‘𝐴)) − 1)
· 𝑘))) |
88 | 83, 86, 87 | syl2an 595 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((1 / ((1 /
(abs‘𝐴)) − 1))
/ 𝑘) = (1 / (((1 /
(abs‘𝐴)) − 1)
· 𝑘))) |
89 | 82, 88 | breqtrrd 5098 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ≤ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘)) |
90 | 89, 54, 45 | 3brtr4d 5102 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ ((1 / ((1 /
(abs‘𝐴)) − 1))
/ 𝑛))‘𝑘)) |
91 | 58 | rpge0d 12705 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝑛 ∈ ℕ ↦
((abs‘𝐴)↑𝑛))‘𝑘)) |
92 | 1, 20, 37, 40, 49, 59, 90, 91 | climsqz2 15279 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0) |
93 | | 1zzd 12281 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℤ) |
94 | 4 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ∈ V) |
95 | 39 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ∈ V) |
96 | 7 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0) |
97 | 96, 11 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) |
98 | | expcl 13728 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑𝑘) ∈
ℂ) |
99 | 23, 7, 98 | syl2an 595 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐴↑𝑘) ∈ ℂ) |
100 | 97, 99 | eqeltrd 2839 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))‘𝑘) ∈ ℂ) |
101 | | absexp 14944 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘)) |
102 | 23, 7, 101 | syl2an 595 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘)) |
103 | 97 | fveq2d 6760 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘((𝑛 ∈ ℕ0
↦ (𝐴↑𝑛))‘𝑘)) = (abs‘(𝐴↑𝑘))) |
104 | 53 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘)) |
105 | 102, 103,
104 | 3eqtr4rd 2789 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = (abs‘((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))‘𝑘))) |
106 | 1, 93, 94, 95, 100, 105 | climabs0 15222 |
. . . 4
⊢ (𝜑 → ((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ⇝ 0 ↔ (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0)) |
107 | 106 | biimpar 477 |
. . 3
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0) → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ⇝ 0) |
108 | 92, 107 | syldan 590 |
. 2
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ⇝ 0) |
109 | 19, 108 | pm2.61dane 3031 |
1
⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ⇝ 0) |