MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolscalem2 Structured version   Visualization version   GIF version

Theorem ovolscalem2 25467
Description: Lemma for ovolshft 25464. (Contributed by Mario Carneiro, 22-Mar-2014.)
Hypotheses
Ref Expression
ovolsca.1 (𝜑𝐴 ⊆ ℝ)
ovolsca.2 (𝜑𝐶 ∈ ℝ+)
ovolsca.3 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴})
ovolsca.4 (𝜑 → (vol*‘𝐴) ∈ ℝ)
Assertion
Ref Expression
ovolscalem2 (𝜑 → (vol*‘𝐵) ≤ ((vol*‘𝐴) / 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem ovolscalem2
Dummy variables 𝑓 𝑛 𝑦 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolsca.1 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
21adantr 480 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → 𝐴 ⊆ ℝ)
3 ovolsca.4 . . . . . 6 (𝜑 → (vol*‘𝐴) ∈ ℝ)
43adantr 480 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (vol*‘𝐴) ∈ ℝ)
5 ovolsca.2 . . . . . 6 (𝜑𝐶 ∈ ℝ+)
6 rpmulcl 13032 . . . . . 6 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → (𝐶 · 𝑦) ∈ ℝ+)
75, 6sylan 580 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (𝐶 · 𝑦) ∈ ℝ+)
8 eqid 2735 . . . . . 6 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
98ovolgelb 25433 . . . . 5 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ (𝐶 · 𝑦) ∈ ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))
102, 4, 7, 9syl3anc 1373 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))
111ad2antrr 726 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → 𝐴 ⊆ ℝ)
125ad2antrr 726 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → 𝐶 ∈ ℝ+)
13 ovolsca.3 . . . . . 6 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴})
1413ad2antrr 726 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → 𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴})
153ad2antrr 726 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → (vol*‘𝐴) ∈ ℝ)
16 2fveq3 6881 . . . . . . . 8 (𝑚 = 𝑛 → (1st ‘(𝑓𝑚)) = (1st ‘(𝑓𝑛)))
1716oveq1d 7420 . . . . . . 7 (𝑚 = 𝑛 → ((1st ‘(𝑓𝑚)) / 𝐶) = ((1st ‘(𝑓𝑛)) / 𝐶))
18 2fveq3 6881 . . . . . . . 8 (𝑚 = 𝑛 → (2nd ‘(𝑓𝑚)) = (2nd ‘(𝑓𝑛)))
1918oveq1d 7420 . . . . . . 7 (𝑚 = 𝑛 → ((2nd ‘(𝑓𝑚)) / 𝐶) = ((2nd ‘(𝑓𝑛)) / 𝐶))
2017, 19opeq12d 4857 . . . . . 6 (𝑚 = 𝑛 → ⟨((1st ‘(𝑓𝑚)) / 𝐶), ((2nd ‘(𝑓𝑚)) / 𝐶)⟩ = ⟨((1st ‘(𝑓𝑛)) / 𝐶), ((2nd ‘(𝑓𝑛)) / 𝐶)⟩)
2120cbvmptv 5225 . . . . 5 (𝑚 ∈ ℕ ↦ ⟨((1st ‘(𝑓𝑚)) / 𝐶), ((2nd ‘(𝑓𝑚)) / 𝐶)⟩) = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝑓𝑛)) / 𝐶), ((2nd ‘(𝑓𝑛)) / 𝐶)⟩)
22 elmapi 8863 . . . . . 6 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2322ad2antrl 728 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
24 simprrl 780 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → 𝐴 ran ((,) ∘ 𝑓))
25 simplr 768 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → 𝑦 ∈ ℝ+)
26 simprrr 781 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦)))
2711, 12, 14, 15, 8, 21, 23, 24, 25, 26ovolscalem1 25466 . . . 4 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → (vol*‘𝐵) ≤ (((vol*‘𝐴) / 𝐶) + 𝑦))
2810, 27rexlimddv 3147 . . 3 ((𝜑𝑦 ∈ ℝ+) → (vol*‘𝐵) ≤ (((vol*‘𝐴) / 𝐶) + 𝑦))
2928ralrimiva 3132 . 2 (𝜑 → ∀𝑦 ∈ ℝ+ (vol*‘𝐵) ≤ (((vol*‘𝐴) / 𝐶) + 𝑦))
30 ssrab2 4055 . . . . 5 {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴} ⊆ ℝ
3113, 30eqsstrdi 4003 . . . 4 (𝜑𝐵 ⊆ ℝ)
32 ovolcl 25431 . . . 4 (𝐵 ⊆ ℝ → (vol*‘𝐵) ∈ ℝ*)
3331, 32syl 17 . . 3 (𝜑 → (vol*‘𝐵) ∈ ℝ*)
343, 5rerpdivcld 13082 . . 3 (𝜑 → ((vol*‘𝐴) / 𝐶) ∈ ℝ)
35 xralrple 13221 . . 3 (((vol*‘𝐵) ∈ ℝ* ∧ ((vol*‘𝐴) / 𝐶) ∈ ℝ) → ((vol*‘𝐵) ≤ ((vol*‘𝐴) / 𝐶) ↔ ∀𝑦 ∈ ℝ+ (vol*‘𝐵) ≤ (((vol*‘𝐴) / 𝐶) + 𝑦)))
3633, 34, 35syl2anc 584 . 2 (𝜑 → ((vol*‘𝐵) ≤ ((vol*‘𝐴) / 𝐶) ↔ ∀𝑦 ∈ ℝ+ (vol*‘𝐵) ≤ (((vol*‘𝐴) / 𝐶) + 𝑦)))
3729, 36mpbird 257 1 (𝜑 → (vol*‘𝐵) ≤ ((vol*‘𝐴) / 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  {crab 3415  cin 3925  wss 3926  cop 4607   cuni 4883   class class class wbr 5119  cmpt 5201   × cxp 5652  ran crn 5655  ccom 5658  wf 6527  cfv 6531  (class class class)co 7405  1st c1st 7986  2nd c2nd 7987  m cmap 8840  supcsup 9452  cr 11128  1c1 11130   + caddc 11132   · cmul 11134  *cxr 11268   < clt 11269  cle 11270  cmin 11466   / cdiv 11894  cn 12240  +crp 13008  (,)cioo 13362  seqcseq 14019  abscabs 15253  vol*covol 25415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-ioo 13366  df-ico 13368  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703  df-ovol 25417
This theorem is referenced by:  ovolsca  25468
  Copyright terms: Public domain W3C validator