Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolscalem2 Structured version   Visualization version   GIF version

Theorem ovolscalem2 24214
 Description: Lemma for ovolshft 24211. (Contributed by Mario Carneiro, 22-Mar-2014.)
Hypotheses
Ref Expression
ovolsca.1 (𝜑𝐴 ⊆ ℝ)
ovolsca.2 (𝜑𝐶 ∈ ℝ+)
ovolsca.3 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴})
ovolsca.4 (𝜑 → (vol*‘𝐴) ∈ ℝ)
Assertion
Ref Expression
ovolscalem2 (𝜑 → (vol*‘𝐵) ≤ ((vol*‘𝐴) / 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem ovolscalem2
Dummy variables 𝑓 𝑛 𝑦 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolsca.1 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
21adantr 484 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → 𝐴 ⊆ ℝ)
3 ovolsca.4 . . . . . 6 (𝜑 → (vol*‘𝐴) ∈ ℝ)
43adantr 484 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (vol*‘𝐴) ∈ ℝ)
5 ovolsca.2 . . . . . 6 (𝜑𝐶 ∈ ℝ+)
6 rpmulcl 12453 . . . . . 6 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → (𝐶 · 𝑦) ∈ ℝ+)
75, 6sylan 583 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (𝐶 · 𝑦) ∈ ℝ+)
8 eqid 2758 . . . . . 6 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
98ovolgelb 24180 . . . . 5 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ (𝐶 · 𝑦) ∈ ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))
102, 4, 7, 9syl3anc 1368 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))
111ad2antrr 725 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → 𝐴 ⊆ ℝ)
125ad2antrr 725 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → 𝐶 ∈ ℝ+)
13 ovolsca.3 . . . . . 6 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴})
1413ad2antrr 725 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → 𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴})
153ad2antrr 725 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → (vol*‘𝐴) ∈ ℝ)
16 2fveq3 6663 . . . . . . . 8 (𝑚 = 𝑛 → (1st ‘(𝑓𝑚)) = (1st ‘(𝑓𝑛)))
1716oveq1d 7165 . . . . . . 7 (𝑚 = 𝑛 → ((1st ‘(𝑓𝑚)) / 𝐶) = ((1st ‘(𝑓𝑛)) / 𝐶))
18 2fveq3 6663 . . . . . . . 8 (𝑚 = 𝑛 → (2nd ‘(𝑓𝑚)) = (2nd ‘(𝑓𝑛)))
1918oveq1d 7165 . . . . . . 7 (𝑚 = 𝑛 → ((2nd ‘(𝑓𝑚)) / 𝐶) = ((2nd ‘(𝑓𝑛)) / 𝐶))
2017, 19opeq12d 4771 . . . . . 6 (𝑚 = 𝑛 → ⟨((1st ‘(𝑓𝑚)) / 𝐶), ((2nd ‘(𝑓𝑚)) / 𝐶)⟩ = ⟨((1st ‘(𝑓𝑛)) / 𝐶), ((2nd ‘(𝑓𝑛)) / 𝐶)⟩)
2120cbvmptv 5135 . . . . 5 (𝑚 ∈ ℕ ↦ ⟨((1st ‘(𝑓𝑚)) / 𝐶), ((2nd ‘(𝑓𝑚)) / 𝐶)⟩) = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝑓𝑛)) / 𝐶), ((2nd ‘(𝑓𝑛)) / 𝐶)⟩)
22 elmapi 8438 . . . . . 6 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2322ad2antrl 727 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
24 simprrl 780 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → 𝐴 ran ((,) ∘ 𝑓))
25 simplr 768 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → 𝑦 ∈ ℝ+)
26 simprrr 781 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦)))
2711, 12, 14, 15, 8, 21, 23, 24, 25, 26ovolscalem1 24213 . . . 4 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → (vol*‘𝐵) ≤ (((vol*‘𝐴) / 𝐶) + 𝑦))
2810, 27rexlimddv 3215 . . 3 ((𝜑𝑦 ∈ ℝ+) → (vol*‘𝐵) ≤ (((vol*‘𝐴) / 𝐶) + 𝑦))
2928ralrimiva 3113 . 2 (𝜑 → ∀𝑦 ∈ ℝ+ (vol*‘𝐵) ≤ (((vol*‘𝐴) / 𝐶) + 𝑦))
30 ssrab2 3984 . . . . 5 {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴} ⊆ ℝ
3113, 30eqsstrdi 3946 . . . 4 (𝜑𝐵 ⊆ ℝ)
32 ovolcl 24178 . . . 4 (𝐵 ⊆ ℝ → (vol*‘𝐵) ∈ ℝ*)
3331, 32syl 17 . . 3 (𝜑 → (vol*‘𝐵) ∈ ℝ*)
343, 5rerpdivcld 12503 . . 3 (𝜑 → ((vol*‘𝐴) / 𝐶) ∈ ℝ)
35 xralrple 12639 . . 3 (((vol*‘𝐵) ∈ ℝ* ∧ ((vol*‘𝐴) / 𝐶) ∈ ℝ) → ((vol*‘𝐵) ≤ ((vol*‘𝐴) / 𝐶) ↔ ∀𝑦 ∈ ℝ+ (vol*‘𝐵) ≤ (((vol*‘𝐴) / 𝐶) + 𝑦)))
3633, 34, 35syl2anc 587 . 2 (𝜑 → ((vol*‘𝐵) ≤ ((vol*‘𝐴) / 𝐶) ↔ ∀𝑦 ∈ ℝ+ (vol*‘𝐵) ≤ (((vol*‘𝐴) / 𝐶) + 𝑦)))
3729, 36mpbird 260 1 (𝜑 → (vol*‘𝐵) ≤ ((vol*‘𝐴) / 𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3070  ∃wrex 3071  {crab 3074   ∩ cin 3857   ⊆ wss 3858  ⟨cop 4528  ∪ cuni 4798   class class class wbr 5032   ↦ cmpt 5112   × cxp 5522  ran crn 5525   ∘ ccom 5528  ⟶wf 6331  ‘cfv 6335  (class class class)co 7150  1st c1st 7691  2nd c2nd 7692   ↑m cmap 8416  supcsup 8937  ℝcr 10574  1c1 10576   + caddc 10578   · cmul 10580  ℝ*cxr 10712   < clt 10713   ≤ cle 10714   − cmin 10908   / cdiv 11335  ℕcn 11674  ℝ+crp 12430  (,)cioo 12779  seqcseq 13418  abscabs 14641  vol*covol 24162 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-er 8299  df-map 8418  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-sup 8939  df-inf 8940  df-oi 9007  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-n0 11935  df-z 12021  df-uz 12283  df-q 12389  df-rp 12431  df-ioo 12783  df-ico 12785  df-fz 12940  df-fzo 13083  df-seq 13419  df-exp 13480  df-hash 13741  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-clim 14893  df-sum 15091  df-ovol 24164 This theorem is referenced by:  ovolsca  24215
 Copyright terms: Public domain W3C validator