MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolscalem2 Structured version   Visualization version   GIF version

Theorem ovolscalem2 25443
Description: Lemma for ovolshft 25440. (Contributed by Mario Carneiro, 22-Mar-2014.)
Hypotheses
Ref Expression
ovolsca.1 (𝜑𝐴 ⊆ ℝ)
ovolsca.2 (𝜑𝐶 ∈ ℝ+)
ovolsca.3 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴})
ovolsca.4 (𝜑 → (vol*‘𝐴) ∈ ℝ)
Assertion
Ref Expression
ovolscalem2 (𝜑 → (vol*‘𝐵) ≤ ((vol*‘𝐴) / 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem ovolscalem2
Dummy variables 𝑓 𝑛 𝑦 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolsca.1 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
21adantr 480 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → 𝐴 ⊆ ℝ)
3 ovolsca.4 . . . . . 6 (𝜑 → (vol*‘𝐴) ∈ ℝ)
43adantr 480 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (vol*‘𝐴) ∈ ℝ)
5 ovolsca.2 . . . . . 6 (𝜑𝐶 ∈ ℝ+)
6 rpmulcl 12915 . . . . . 6 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → (𝐶 · 𝑦) ∈ ℝ+)
75, 6sylan 580 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (𝐶 · 𝑦) ∈ ℝ+)
8 eqid 2731 . . . . . 6 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
98ovolgelb 25409 . . . . 5 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ (𝐶 · 𝑦) ∈ ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))
102, 4, 7, 9syl3anc 1373 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))
111ad2antrr 726 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → 𝐴 ⊆ ℝ)
125ad2antrr 726 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → 𝐶 ∈ ℝ+)
13 ovolsca.3 . . . . . 6 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴})
1413ad2antrr 726 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → 𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴})
153ad2antrr 726 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → (vol*‘𝐴) ∈ ℝ)
16 2fveq3 6827 . . . . . . . 8 (𝑚 = 𝑛 → (1st ‘(𝑓𝑚)) = (1st ‘(𝑓𝑛)))
1716oveq1d 7361 . . . . . . 7 (𝑚 = 𝑛 → ((1st ‘(𝑓𝑚)) / 𝐶) = ((1st ‘(𝑓𝑛)) / 𝐶))
18 2fveq3 6827 . . . . . . . 8 (𝑚 = 𝑛 → (2nd ‘(𝑓𝑚)) = (2nd ‘(𝑓𝑛)))
1918oveq1d 7361 . . . . . . 7 (𝑚 = 𝑛 → ((2nd ‘(𝑓𝑚)) / 𝐶) = ((2nd ‘(𝑓𝑛)) / 𝐶))
2017, 19opeq12d 4833 . . . . . 6 (𝑚 = 𝑛 → ⟨((1st ‘(𝑓𝑚)) / 𝐶), ((2nd ‘(𝑓𝑚)) / 𝐶)⟩ = ⟨((1st ‘(𝑓𝑛)) / 𝐶), ((2nd ‘(𝑓𝑛)) / 𝐶)⟩)
2120cbvmptv 5195 . . . . 5 (𝑚 ∈ ℕ ↦ ⟨((1st ‘(𝑓𝑚)) / 𝐶), ((2nd ‘(𝑓𝑚)) / 𝐶)⟩) = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝑓𝑛)) / 𝐶), ((2nd ‘(𝑓𝑛)) / 𝐶)⟩)
22 elmapi 8773 . . . . . 6 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2322ad2antrl 728 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
24 simprrl 780 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → 𝐴 ran ((,) ∘ 𝑓))
25 simplr 768 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → 𝑦 ∈ ℝ+)
26 simprrr 781 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦)))
2711, 12, 14, 15, 8, 21, 23, 24, 25, 26ovolscalem1 25442 . . . 4 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → (vol*‘𝐵) ≤ (((vol*‘𝐴) / 𝐶) + 𝑦))
2810, 27rexlimddv 3139 . . 3 ((𝜑𝑦 ∈ ℝ+) → (vol*‘𝐵) ≤ (((vol*‘𝐴) / 𝐶) + 𝑦))
2928ralrimiva 3124 . 2 (𝜑 → ∀𝑦 ∈ ℝ+ (vol*‘𝐵) ≤ (((vol*‘𝐴) / 𝐶) + 𝑦))
30 ssrab2 4030 . . . . 5 {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴} ⊆ ℝ
3113, 30eqsstrdi 3979 . . . 4 (𝜑𝐵 ⊆ ℝ)
32 ovolcl 25407 . . . 4 (𝐵 ⊆ ℝ → (vol*‘𝐵) ∈ ℝ*)
3331, 32syl 17 . . 3 (𝜑 → (vol*‘𝐵) ∈ ℝ*)
343, 5rerpdivcld 12965 . . 3 (𝜑 → ((vol*‘𝐴) / 𝐶) ∈ ℝ)
35 xralrple 13104 . . 3 (((vol*‘𝐵) ∈ ℝ* ∧ ((vol*‘𝐴) / 𝐶) ∈ ℝ) → ((vol*‘𝐵) ≤ ((vol*‘𝐴) / 𝐶) ↔ ∀𝑦 ∈ ℝ+ (vol*‘𝐵) ≤ (((vol*‘𝐴) / 𝐶) + 𝑦)))
3633, 34, 35syl2anc 584 . 2 (𝜑 → ((vol*‘𝐵) ≤ ((vol*‘𝐴) / 𝐶) ↔ ∀𝑦 ∈ ℝ+ (vol*‘𝐵) ≤ (((vol*‘𝐴) / 𝐶) + 𝑦)))
3729, 36mpbird 257 1 (𝜑 → (vol*‘𝐵) ≤ ((vol*‘𝐴) / 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  {crab 3395  cin 3901  wss 3902  cop 4582   cuni 4859   class class class wbr 5091  cmpt 5172   × cxp 5614  ran crn 5617  ccom 5620  wf 6477  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  m cmap 8750  supcsup 9324  cr 11005  1c1 11007   + caddc 11009   · cmul 11011  *cxr 11145   < clt 11146  cle 11147  cmin 11344   / cdiv 11774  cn 12125  +crp 12890  (,)cioo 13245  seqcseq 13908  abscabs 15141  vol*covol 25391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-ioo 13249  df-ico 13251  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-ovol 25393
This theorem is referenced by:  ovolsca  25444
  Copyright terms: Public domain W3C validator