MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolscalem2 Structured version   Visualization version   GIF version

Theorem ovolscalem2 25431
Description: Lemma for ovolshft 25428. (Contributed by Mario Carneiro, 22-Mar-2014.)
Hypotheses
Ref Expression
ovolsca.1 (𝜑𝐴 ⊆ ℝ)
ovolsca.2 (𝜑𝐶 ∈ ℝ+)
ovolsca.3 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴})
ovolsca.4 (𝜑 → (vol*‘𝐴) ∈ ℝ)
Assertion
Ref Expression
ovolscalem2 (𝜑 → (vol*‘𝐵) ≤ ((vol*‘𝐴) / 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem ovolscalem2
Dummy variables 𝑓 𝑛 𝑦 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolsca.1 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
21adantr 480 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → 𝐴 ⊆ ℝ)
3 ovolsca.4 . . . . . 6 (𝜑 → (vol*‘𝐴) ∈ ℝ)
43adantr 480 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (vol*‘𝐴) ∈ ℝ)
5 ovolsca.2 . . . . . 6 (𝜑𝐶 ∈ ℝ+)
6 rpmulcl 12936 . . . . . 6 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → (𝐶 · 𝑦) ∈ ℝ+)
75, 6sylan 580 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (𝐶 · 𝑦) ∈ ℝ+)
8 eqid 2729 . . . . . 6 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
98ovolgelb 25397 . . . . 5 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ (𝐶 · 𝑦) ∈ ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))
102, 4, 7, 9syl3anc 1373 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))
111ad2antrr 726 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → 𝐴 ⊆ ℝ)
125ad2antrr 726 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → 𝐶 ∈ ℝ+)
13 ovolsca.3 . . . . . 6 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴})
1413ad2antrr 726 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → 𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴})
153ad2antrr 726 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → (vol*‘𝐴) ∈ ℝ)
16 2fveq3 6831 . . . . . . . 8 (𝑚 = 𝑛 → (1st ‘(𝑓𝑚)) = (1st ‘(𝑓𝑛)))
1716oveq1d 7368 . . . . . . 7 (𝑚 = 𝑛 → ((1st ‘(𝑓𝑚)) / 𝐶) = ((1st ‘(𝑓𝑛)) / 𝐶))
18 2fveq3 6831 . . . . . . . 8 (𝑚 = 𝑛 → (2nd ‘(𝑓𝑚)) = (2nd ‘(𝑓𝑛)))
1918oveq1d 7368 . . . . . . 7 (𝑚 = 𝑛 → ((2nd ‘(𝑓𝑚)) / 𝐶) = ((2nd ‘(𝑓𝑛)) / 𝐶))
2017, 19opeq12d 4835 . . . . . 6 (𝑚 = 𝑛 → ⟨((1st ‘(𝑓𝑚)) / 𝐶), ((2nd ‘(𝑓𝑚)) / 𝐶)⟩ = ⟨((1st ‘(𝑓𝑛)) / 𝐶), ((2nd ‘(𝑓𝑛)) / 𝐶)⟩)
2120cbvmptv 5199 . . . . 5 (𝑚 ∈ ℕ ↦ ⟨((1st ‘(𝑓𝑚)) / 𝐶), ((2nd ‘(𝑓𝑚)) / 𝐶)⟩) = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝑓𝑛)) / 𝐶), ((2nd ‘(𝑓𝑛)) / 𝐶)⟩)
22 elmapi 8783 . . . . . 6 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2322ad2antrl 728 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
24 simprrl 780 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → 𝐴 ran ((,) ∘ 𝑓))
25 simplr 768 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → 𝑦 ∈ ℝ+)
26 simprrr 781 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦)))
2711, 12, 14, 15, 8, 21, 23, 24, 25, 26ovolscalem1 25430 . . . 4 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))))) → (vol*‘𝐵) ≤ (((vol*‘𝐴) / 𝐶) + 𝑦))
2810, 27rexlimddv 3136 . . 3 ((𝜑𝑦 ∈ ℝ+) → (vol*‘𝐵) ≤ (((vol*‘𝐴) / 𝐶) + 𝑦))
2928ralrimiva 3121 . 2 (𝜑 → ∀𝑦 ∈ ℝ+ (vol*‘𝐵) ≤ (((vol*‘𝐴) / 𝐶) + 𝑦))
30 ssrab2 4033 . . . . 5 {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴} ⊆ ℝ
3113, 30eqsstrdi 3982 . . . 4 (𝜑𝐵 ⊆ ℝ)
32 ovolcl 25395 . . . 4 (𝐵 ⊆ ℝ → (vol*‘𝐵) ∈ ℝ*)
3331, 32syl 17 . . 3 (𝜑 → (vol*‘𝐵) ∈ ℝ*)
343, 5rerpdivcld 12986 . . 3 (𝜑 → ((vol*‘𝐴) / 𝐶) ∈ ℝ)
35 xralrple 13125 . . 3 (((vol*‘𝐵) ∈ ℝ* ∧ ((vol*‘𝐴) / 𝐶) ∈ ℝ) → ((vol*‘𝐵) ≤ ((vol*‘𝐴) / 𝐶) ↔ ∀𝑦 ∈ ℝ+ (vol*‘𝐵) ≤ (((vol*‘𝐴) / 𝐶) + 𝑦)))
3633, 34, 35syl2anc 584 . 2 (𝜑 → ((vol*‘𝐵) ≤ ((vol*‘𝐴) / 𝐶) ↔ ∀𝑦 ∈ ℝ+ (vol*‘𝐵) ≤ (((vol*‘𝐴) / 𝐶) + 𝑦)))
3729, 36mpbird 257 1 (𝜑 → (vol*‘𝐵) ≤ ((vol*‘𝐴) / 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3396  cin 3904  wss 3905  cop 4585   cuni 4861   class class class wbr 5095  cmpt 5176   × cxp 5621  ran crn 5624  ccom 5627  wf 6482  cfv 6486  (class class class)co 7353  1st c1st 7929  2nd c2nd 7930  m cmap 8760  supcsup 9349  cr 11027  1c1 11029   + caddc 11031   · cmul 11033  *cxr 11167   < clt 11168  cle 11169  cmin 11365   / cdiv 11795  cn 12146  +crp 12911  (,)cioo 13266  seqcseq 13926  abscabs 15159  vol*covol 25379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-ioo 13270  df-ico 13272  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-ovol 25381
This theorem is referenced by:  ovolsca  25432
  Copyright terms: Public domain W3C validator