Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > seqf | Structured version Visualization version GIF version |
Description: Range of the recursive sequence builder (special case of seqf2 13440). (Contributed by Mario Carneiro, 24-Jun-2013.) |
Ref | Expression |
---|---|
seqf.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
seqf.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
seqf.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → (𝐹‘𝑥) ∈ 𝑆) |
seqf.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
Ref | Expression |
---|---|
seqf | ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6659 | . . . 4 ⊢ (𝑥 = 𝑀 → (𝐹‘𝑥) = (𝐹‘𝑀)) | |
2 | 1 | eleq1d 2837 | . . 3 ⊢ (𝑥 = 𝑀 → ((𝐹‘𝑥) ∈ 𝑆 ↔ (𝐹‘𝑀) ∈ 𝑆)) |
3 | seqf.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → (𝐹‘𝑥) ∈ 𝑆) | |
4 | 3 | ralrimiva 3114 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑍 (𝐹‘𝑥) ∈ 𝑆) |
5 | seqf.2 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
6 | uzid 12298 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
8 | seqf.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
9 | 7, 8 | eleqtrrdi 2864 | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝑍) |
10 | 2, 4, 9 | rspcdva 3544 | . 2 ⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝑆) |
11 | seqf.4 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
12 | peano2uzr 12344 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑥 ∈ (ℤ≥‘𝑀)) | |
13 | 5, 12 | sylan 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑥 ∈ (ℤ≥‘𝑀)) |
14 | 13, 8 | eleqtrrdi 2864 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑥 ∈ 𝑍) |
15 | 14, 3 | syldan 595 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑥) ∈ 𝑆) |
16 | 10, 11, 8, 5, 15 | seqf2 13440 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ⟶wf 6332 ‘cfv 6336 (class class class)co 7151 1c1 10577 + caddc 10579 ℤcz 12021 ℤ≥cuz 12283 seqcseq 13419 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10632 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 ax-pre-mulgt0 10653 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-pnf 10716 df-mnf 10717 df-xr 10718 df-ltxr 10719 df-le 10720 df-sub 10911 df-neg 10912 df-nn 11676 df-n0 11936 df-z 12022 df-uz 12284 df-fz 12941 df-seq 13420 |
This theorem is referenced by: serf 13449 serfre 13450 bcval5 13729 prodf 15292 iprodrecl 15405 algrf 15970 pcmptcl 16283 ovolsf 24173 dvnff 24623 elqaalem2 25016 elqaalem3 25017 regamcl 25746 opsqrlem4 30026 sseqf 31879 fsumsermpt 42588 sge0isum 43433 sge0seq 43452 |
Copyright terms: Public domain | W3C validator |