![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sqrtrege0 | Structured version Visualization version GIF version |
Description: The square root function must make a choice between the two roots, which differ by a sign change. In the general complex case, the choice of "positive" and "negative" is not so clear. The convention we use is to take the root with positive real part, unless 𝐴 is a nonpositive real (in which case both roots have 0 real part); in this case we take the one in the positive imaginary direction. Another way to look at this is that we choose the root that is largest with respect to lexicographic order on the complex numbers (sorting by real part first, then by imaginary part as tie-breaker). (Contributed by Mario Carneiro, 10-Jul-2013.) |
Ref | Expression |
---|---|
sqrtrege0 | ⊢ (𝐴 ∈ ℂ → 0 ≤ (ℜ‘(√‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sqrtthlem 14513 | . 2 ⊢ (𝐴 ∈ ℂ → (((√‘𝐴)↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(√‘𝐴)) ∧ (i · (√‘𝐴)) ∉ ℝ+)) | |
2 | 1 | simp2d 1134 | 1 ⊢ (𝐴 ∈ ℂ → 0 ≤ (ℜ‘(√‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2107 ∉ wnel 3075 class class class wbr 4888 ‘cfv 6137 (class class class)co 6924 ℂcc 10272 0cc0 10274 ici 10276 · cmul 10279 ≤ cle 10414 2c2 11434 ℝ+crp 12141 ↑cexp 13182 ℜcre 14248 √csqrt 14384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 ax-pre-sup 10352 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-sup 8638 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-div 11035 df-nn 11379 df-2 11442 df-3 11443 df-n0 11647 df-z 11733 df-uz 11997 df-rp 12142 df-seq 13124 df-exp 13183 df-cj 14250 df-re 14251 df-im 14252 df-sqrt 14386 df-abs 14387 |
This theorem is referenced by: sqrtrege0d 14589 cxpsqrtlem 24889 |
Copyright terms: Public domain | W3C validator |