MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1eq Structured version   Visualization version   GIF version

Theorem pj1eq 18826
Description: Any element of a direct subspace sum can be decomposed uniquely into projections onto the left and right factors. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
pj1eu.a + = (+g𝐺)
pj1eu.s = (LSSum‘𝐺)
pj1eu.o 0 = (0g𝐺)
pj1eu.z 𝑍 = (Cntz‘𝐺)
pj1eu.2 (𝜑𝑇 ∈ (SubGrp‘𝐺))
pj1eu.3 (𝜑𝑈 ∈ (SubGrp‘𝐺))
pj1eu.4 (𝜑 → (𝑇𝑈) = { 0 })
pj1eu.5 (𝜑𝑇 ⊆ (𝑍𝑈))
pj1f.p 𝑃 = (proj1𝐺)
pj1eq.5 (𝜑𝑋 ∈ (𝑇 𝑈))
pj1eq.6 (𝜑𝐵𝑇)
pj1eq.7 (𝜑𝐶𝑈)
Assertion
Ref Expression
pj1eq (𝜑 → (𝑋 = (𝐵 + 𝐶) ↔ (((𝑇𝑃𝑈)‘𝑋) = 𝐵 ∧ ((𝑈𝑃𝑇)‘𝑋) = 𝐶)))

Proof of Theorem pj1eq
StepHypRef Expression
1 pj1eq.5 . . . 4 (𝜑𝑋 ∈ (𝑇 𝑈))
2 pj1eu.a . . . . 5 + = (+g𝐺)
3 pj1eu.s . . . . 5 = (LSSum‘𝐺)
4 pj1eu.o . . . . 5 0 = (0g𝐺)
5 pj1eu.z . . . . 5 𝑍 = (Cntz‘𝐺)
6 pj1eu.2 . . . . 5 (𝜑𝑇 ∈ (SubGrp‘𝐺))
7 pj1eu.3 . . . . 5 (𝜑𝑈 ∈ (SubGrp‘𝐺))
8 pj1eu.4 . . . . 5 (𝜑 → (𝑇𝑈) = { 0 })
9 pj1eu.5 . . . . 5 (𝜑𝑇 ⊆ (𝑍𝑈))
10 pj1f.p . . . . 5 𝑃 = (proj1𝐺)
112, 3, 4, 5, 6, 7, 8, 9, 10pj1id 18825 . . . 4 ((𝜑𝑋 ∈ (𝑇 𝑈)) → 𝑋 = (((𝑇𝑃𝑈)‘𝑋) + ((𝑈𝑃𝑇)‘𝑋)))
121, 11mpdan 685 . . 3 (𝜑𝑋 = (((𝑇𝑃𝑈)‘𝑋) + ((𝑈𝑃𝑇)‘𝑋)))
1312eqeq1d 2823 . 2 (𝜑 → (𝑋 = (𝐵 + 𝐶) ↔ (((𝑇𝑃𝑈)‘𝑋) + ((𝑈𝑃𝑇)‘𝑋)) = (𝐵 + 𝐶)))
142, 3, 4, 5, 6, 7, 8, 9, 10pj1f 18823 . . . 4 (𝜑 → (𝑇𝑃𝑈):(𝑇 𝑈)⟶𝑇)
1514, 1ffvelrnd 6852 . . 3 (𝜑 → ((𝑇𝑃𝑈)‘𝑋) ∈ 𝑇)
16 pj1eq.6 . . 3 (𝜑𝐵𝑇)
172, 3, 4, 5, 6, 7, 8, 9, 10pj2f 18824 . . . 4 (𝜑 → (𝑈𝑃𝑇):(𝑇 𝑈)⟶𝑈)
1817, 1ffvelrnd 6852 . . 3 (𝜑 → ((𝑈𝑃𝑇)‘𝑋) ∈ 𝑈)
19 pj1eq.7 . . 3 (𝜑𝐶𝑈)
202, 4, 5, 6, 7, 8, 9, 15, 16, 18, 19subgdisjb 18819 . 2 (𝜑 → ((((𝑇𝑃𝑈)‘𝑋) + ((𝑈𝑃𝑇)‘𝑋)) = (𝐵 + 𝐶) ↔ (((𝑇𝑃𝑈)‘𝑋) = 𝐵 ∧ ((𝑈𝑃𝑇)‘𝑋) = 𝐶)))
2113, 20bitrd 281 1 (𝜑 → (𝑋 = (𝐵 + 𝐶) ↔ (((𝑇𝑃𝑈)‘𝑋) = 𝐵 ∧ ((𝑈𝑃𝑇)‘𝑋) = 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  cin 3935  wss 3936  {csn 4567  cfv 6355  (class class class)co 7156  +gcplusg 16565  0gc0g 16713  SubGrpcsubg 18273  Cntzccntz 18445  LSSumclsm 18759  proj1cpj1 18760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-sbg 18108  df-subg 18276  df-cntz 18447  df-lsm 18761  df-pj1 18762
This theorem is referenced by:  pj1lid  18827  pj1rid  18828  pj1ghm  18829  lsmhash  18831  dpjidcl  19180  pj1lmhm  19872
  Copyright terms: Public domain W3C validator