Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1eq Structured version   Visualization version   GIF version

Theorem pj1eq 18805
 Description: Any element of a direct subspace sum can be decomposed uniquely into projections onto the left and right factors. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
pj1eu.a + = (+g𝐺)
pj1eu.s = (LSSum‘𝐺)
pj1eu.o 0 = (0g𝐺)
pj1eu.z 𝑍 = (Cntz‘𝐺)
pj1eu.2 (𝜑𝑇 ∈ (SubGrp‘𝐺))
pj1eu.3 (𝜑𝑈 ∈ (SubGrp‘𝐺))
pj1eu.4 (𝜑 → (𝑇𝑈) = { 0 })
pj1eu.5 (𝜑𝑇 ⊆ (𝑍𝑈))
pj1f.p 𝑃 = (proj1𝐺)
pj1eq.5 (𝜑𝑋 ∈ (𝑇 𝑈))
pj1eq.6 (𝜑𝐵𝑇)
pj1eq.7 (𝜑𝐶𝑈)
Assertion
Ref Expression
pj1eq (𝜑 → (𝑋 = (𝐵 + 𝐶) ↔ (((𝑇𝑃𝑈)‘𝑋) = 𝐵 ∧ ((𝑈𝑃𝑇)‘𝑋) = 𝐶)))

Proof of Theorem pj1eq
StepHypRef Expression
1 pj1eq.5 . . . 4 (𝜑𝑋 ∈ (𝑇 𝑈))
2 pj1eu.a . . . . 5 + = (+g𝐺)
3 pj1eu.s . . . . 5 = (LSSum‘𝐺)
4 pj1eu.o . . . . 5 0 = (0g𝐺)
5 pj1eu.z . . . . 5 𝑍 = (Cntz‘𝐺)
6 pj1eu.2 . . . . 5 (𝜑𝑇 ∈ (SubGrp‘𝐺))
7 pj1eu.3 . . . . 5 (𝜑𝑈 ∈ (SubGrp‘𝐺))
8 pj1eu.4 . . . . 5 (𝜑 → (𝑇𝑈) = { 0 })
9 pj1eu.5 . . . . 5 (𝜑𝑇 ⊆ (𝑍𝑈))
10 pj1f.p . . . . 5 𝑃 = (proj1𝐺)
112, 3, 4, 5, 6, 7, 8, 9, 10pj1id 18804 . . . 4 ((𝜑𝑋 ∈ (𝑇 𝑈)) → 𝑋 = (((𝑇𝑃𝑈)‘𝑋) + ((𝑈𝑃𝑇)‘𝑋)))
121, 11mpdan 685 . . 3 (𝜑𝑋 = (((𝑇𝑃𝑈)‘𝑋) + ((𝑈𝑃𝑇)‘𝑋)))
1312eqeq1d 2822 . 2 (𝜑 → (𝑋 = (𝐵 + 𝐶) ↔ (((𝑇𝑃𝑈)‘𝑋) + ((𝑈𝑃𝑇)‘𝑋)) = (𝐵 + 𝐶)))
142, 3, 4, 5, 6, 7, 8, 9, 10pj1f 18802 . . . 4 (𝜑 → (𝑇𝑃𝑈):(𝑇 𝑈)⟶𝑇)
1514, 1ffvelrnd 6828 . . 3 (𝜑 → ((𝑇𝑃𝑈)‘𝑋) ∈ 𝑇)
16 pj1eq.6 . . 3 (𝜑𝐵𝑇)
172, 3, 4, 5, 6, 7, 8, 9, 10pj2f 18803 . . . 4 (𝜑 → (𝑈𝑃𝑇):(𝑇 𝑈)⟶𝑈)
1817, 1ffvelrnd 6828 . . 3 (𝜑 → ((𝑈𝑃𝑇)‘𝑋) ∈ 𝑈)
19 pj1eq.7 . . 3 (𝜑𝐶𝑈)
202, 4, 5, 6, 7, 8, 9, 15, 16, 18, 19subgdisjb 18798 . 2 (𝜑 → ((((𝑇𝑃𝑈)‘𝑋) + ((𝑈𝑃𝑇)‘𝑋)) = (𝐵 + 𝐶) ↔ (((𝑇𝑃𝑈)‘𝑋) = 𝐵 ∧ ((𝑈𝑃𝑇)‘𝑋) = 𝐶)))
2113, 20bitrd 281 1 (𝜑 → (𝑋 = (𝐵 + 𝐶) ↔ (((𝑇𝑃𝑈)‘𝑋) = 𝐵 ∧ ((𝑈𝑃𝑇)‘𝑋) = 𝐶)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   = wceq 1537   ∈ wcel 2114   ∩ cin 3912   ⊆ wss 3913  {csn 4543  ‘cfv 6331  (class class class)co 7133  +gcplusg 16544  0gc0g 16692  SubGrpcsubg 18252  Cntzccntz 18424  LSSumclsm 18738  proj1cpj1 18739 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-1st 7667  df-2nd 7668  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-er 8267  df-en 8488  df-dom 8489  df-sdom 8490  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-nn 11617  df-2 11679  df-ndx 16465  df-slot 16466  df-base 16468  df-sets 16469  df-ress 16470  df-plusg 16557  df-0g 16694  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-grp 18085  df-minusg 18086  df-sbg 18087  df-subg 18255  df-cntz 18426  df-lsm 18740  df-pj1 18741 This theorem is referenced by:  pj1lid  18806  pj1rid  18807  pj1ghm  18808  lsmhash  18810  dpjidcl  19159  pj1lmhm  19848
 Copyright terms: Public domain W3C validator