| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pj1eq | Structured version Visualization version GIF version | ||
| Description: Any element of a direct subspace sum can be decomposed uniquely into projections onto the left and right factors. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| Ref | Expression |
|---|---|
| pj1eu.a | ⊢ + = (+g‘𝐺) |
| pj1eu.s | ⊢ ⊕ = (LSSum‘𝐺) |
| pj1eu.o | ⊢ 0 = (0g‘𝐺) |
| pj1eu.z | ⊢ 𝑍 = (Cntz‘𝐺) |
| pj1eu.2 | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
| pj1eu.3 | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
| pj1eu.4 | ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) |
| pj1eu.5 | ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) |
| pj1f.p | ⊢ 𝑃 = (proj1‘𝐺) |
| pj1eq.5 | ⊢ (𝜑 → 𝑋 ∈ (𝑇 ⊕ 𝑈)) |
| pj1eq.6 | ⊢ (𝜑 → 𝐵 ∈ 𝑇) |
| pj1eq.7 | ⊢ (𝜑 → 𝐶 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| pj1eq | ⊢ (𝜑 → (𝑋 = (𝐵 + 𝐶) ↔ (((𝑇𝑃𝑈)‘𝑋) = 𝐵 ∧ ((𝑈𝑃𝑇)‘𝑋) = 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pj1eq.5 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑇 ⊕ 𝑈)) | |
| 2 | pj1eu.a | . . . . 5 ⊢ + = (+g‘𝐺) | |
| 3 | pj1eu.s | . . . . 5 ⊢ ⊕ = (LSSum‘𝐺) | |
| 4 | pj1eu.o | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
| 5 | pj1eu.z | . . . . 5 ⊢ 𝑍 = (Cntz‘𝐺) | |
| 6 | pj1eu.2 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
| 7 | pj1eu.3 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
| 8 | pj1eu.4 | . . . . 5 ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) | |
| 9 | pj1eu.5 | . . . . 5 ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) | |
| 10 | pj1f.p | . . . . 5 ⊢ 𝑃 = (proj1‘𝐺) | |
| 11 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | pj1id 19665 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑇 ⊕ 𝑈)) → 𝑋 = (((𝑇𝑃𝑈)‘𝑋) + ((𝑈𝑃𝑇)‘𝑋))) |
| 12 | 1, 11 | mpdan 687 | . . 3 ⊢ (𝜑 → 𝑋 = (((𝑇𝑃𝑈)‘𝑋) + ((𝑈𝑃𝑇)‘𝑋))) |
| 13 | 12 | eqeq1d 2736 | . 2 ⊢ (𝜑 → (𝑋 = (𝐵 + 𝐶) ↔ (((𝑇𝑃𝑈)‘𝑋) + ((𝑈𝑃𝑇)‘𝑋)) = (𝐵 + 𝐶))) |
| 14 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | pj1f 19663 | . . . 4 ⊢ (𝜑 → (𝑇𝑃𝑈):(𝑇 ⊕ 𝑈)⟶𝑇) |
| 15 | 14, 1 | ffvelcdmd 7071 | . . 3 ⊢ (𝜑 → ((𝑇𝑃𝑈)‘𝑋) ∈ 𝑇) |
| 16 | pj1eq.6 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑇) | |
| 17 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | pj2f 19664 | . . . 4 ⊢ (𝜑 → (𝑈𝑃𝑇):(𝑇 ⊕ 𝑈)⟶𝑈) |
| 18 | 17, 1 | ffvelcdmd 7071 | . . 3 ⊢ (𝜑 → ((𝑈𝑃𝑇)‘𝑋) ∈ 𝑈) |
| 19 | pj1eq.7 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑈) | |
| 20 | 2, 4, 5, 6, 7, 8, 9, 15, 16, 18, 19 | subgdisjb 19659 | . 2 ⊢ (𝜑 → ((((𝑇𝑃𝑈)‘𝑋) + ((𝑈𝑃𝑇)‘𝑋)) = (𝐵 + 𝐶) ↔ (((𝑇𝑃𝑈)‘𝑋) = 𝐵 ∧ ((𝑈𝑃𝑇)‘𝑋) = 𝐶))) |
| 21 | 13, 20 | bitrd 279 | 1 ⊢ (𝜑 → (𝑋 = (𝐵 + 𝐶) ↔ (((𝑇𝑃𝑈)‘𝑋) = 𝐵 ∧ ((𝑈𝑃𝑇)‘𝑋) = 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∩ cin 3923 ⊆ wss 3924 {csn 4599 ‘cfv 6527 (class class class)co 7399 +gcplusg 17256 0gc0g 17438 SubGrpcsubg 19088 Cntzccntz 19283 LSSumclsm 19600 proj1cpj1 19601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-1st 7982 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-er 8713 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-nn 12233 df-2 12295 df-sets 17168 df-slot 17186 df-ndx 17198 df-base 17214 df-ress 17237 df-plusg 17269 df-0g 17440 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-grp 18904 df-minusg 18905 df-sbg 18906 df-subg 19091 df-cntz 19285 df-lsm 19602 df-pj1 19603 |
| This theorem is referenced by: pj1lid 19667 pj1rid 19668 pj1ghm 19669 lsmhash 19671 dpjidcl 20026 pj1lmhm 21043 |
| Copyright terms: Public domain | W3C validator |