![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pj1eq | Structured version Visualization version GIF version |
Description: Any element of a direct subspace sum can be decomposed uniquely into projections onto the left and right factors. (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
pj1eu.a | โข + = (+gโ๐บ) |
pj1eu.s | โข โ = (LSSumโ๐บ) |
pj1eu.o | โข 0 = (0gโ๐บ) |
pj1eu.z | โข ๐ = (Cntzโ๐บ) |
pj1eu.2 | โข (๐ โ ๐ โ (SubGrpโ๐บ)) |
pj1eu.3 | โข (๐ โ ๐ โ (SubGrpโ๐บ)) |
pj1eu.4 | โข (๐ โ (๐ โฉ ๐) = { 0 }) |
pj1eu.5 | โข (๐ โ ๐ โ (๐โ๐)) |
pj1f.p | โข ๐ = (proj1โ๐บ) |
pj1eq.5 | โข (๐ โ ๐ โ (๐ โ ๐)) |
pj1eq.6 | โข (๐ โ ๐ต โ ๐) |
pj1eq.7 | โข (๐ โ ๐ถ โ ๐) |
Ref | Expression |
---|---|
pj1eq | โข (๐ โ (๐ = (๐ต + ๐ถ) โ (((๐๐๐)โ๐) = ๐ต โง ((๐๐๐)โ๐) = ๐ถ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pj1eq.5 | . . . 4 โข (๐ โ ๐ โ (๐ โ ๐)) | |
2 | pj1eu.a | . . . . 5 โข + = (+gโ๐บ) | |
3 | pj1eu.s | . . . . 5 โข โ = (LSSumโ๐บ) | |
4 | pj1eu.o | . . . . 5 โข 0 = (0gโ๐บ) | |
5 | pj1eu.z | . . . . 5 โข ๐ = (Cntzโ๐บ) | |
6 | pj1eu.2 | . . . . 5 โข (๐ โ ๐ โ (SubGrpโ๐บ)) | |
7 | pj1eu.3 | . . . . 5 โข (๐ โ ๐ โ (SubGrpโ๐บ)) | |
8 | pj1eu.4 | . . . . 5 โข (๐ โ (๐ โฉ ๐) = { 0 }) | |
9 | pj1eu.5 | . . . . 5 โข (๐ โ ๐ โ (๐โ๐)) | |
10 | pj1f.p | . . . . 5 โข ๐ = (proj1โ๐บ) | |
11 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | pj1id 19615 | . . . 4 โข ((๐ โง ๐ โ (๐ โ ๐)) โ ๐ = (((๐๐๐)โ๐) + ((๐๐๐)โ๐))) |
12 | 1, 11 | mpdan 684 | . . 3 โข (๐ โ ๐ = (((๐๐๐)โ๐) + ((๐๐๐)โ๐))) |
13 | 12 | eqeq1d 2726 | . 2 โข (๐ โ (๐ = (๐ต + ๐ถ) โ (((๐๐๐)โ๐) + ((๐๐๐)โ๐)) = (๐ต + ๐ถ))) |
14 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | pj1f 19613 | . . . 4 โข (๐ โ (๐๐๐):(๐ โ ๐)โถ๐) |
15 | 14, 1 | ffvelcdmd 7078 | . . 3 โข (๐ โ ((๐๐๐)โ๐) โ ๐) |
16 | pj1eq.6 | . . 3 โข (๐ โ ๐ต โ ๐) | |
17 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | pj2f 19614 | . . . 4 โข (๐ โ (๐๐๐):(๐ โ ๐)โถ๐) |
18 | 17, 1 | ffvelcdmd 7078 | . . 3 โข (๐ โ ((๐๐๐)โ๐) โ ๐) |
19 | pj1eq.7 | . . 3 โข (๐ โ ๐ถ โ ๐) | |
20 | 2, 4, 5, 6, 7, 8, 9, 15, 16, 18, 19 | subgdisjb 19609 | . 2 โข (๐ โ ((((๐๐๐)โ๐) + ((๐๐๐)โ๐)) = (๐ต + ๐ถ) โ (((๐๐๐)โ๐) = ๐ต โง ((๐๐๐)โ๐) = ๐ถ))) |
21 | 13, 20 | bitrd 279 | 1 โข (๐ โ (๐ = (๐ต + ๐ถ) โ (((๐๐๐)โ๐) = ๐ต โง ((๐๐๐)โ๐) = ๐ถ))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โ wb 205 โง wa 395 = wceq 1533 โ wcel 2098 โฉ cin 3940 โ wss 3941 {csn 4621 โcfv 6534 (class class class)co 7402 +gcplusg 17202 0gc0g 17390 SubGrpcsubg 19043 Cntzccntz 19227 LSSumclsm 19550 proj1cpj1 19551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-0g 17392 df-mgm 18569 df-sgrp 18648 df-mnd 18664 df-grp 18862 df-minusg 18863 df-sbg 18864 df-subg 19046 df-cntz 19229 df-lsm 19552 df-pj1 19553 |
This theorem is referenced by: pj1lid 19617 pj1rid 19618 pj1ghm 19619 lsmhash 19621 dpjidcl 19976 pj1lmhm 20944 |
Copyright terms: Public domain | W3C validator |