MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcbc Structured version   Visualization version   GIF version

Theorem pcbc 16934
Description: Calculate the prime count of a binomial coefficient. (Contributed by Mario Carneiro, 11-Mar-2014.) (Revised by Mario Carneiro, 21-May-2014.)
Assertion
Ref Expression
pcbc ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (𝑁C𝐾)) = Σ𝑘 ∈ (1...𝑁)((⌊‘(𝑁 / (𝑃𝑘))) − ((⌊‘((𝑁𝐾) / (𝑃𝑘))) + (⌊‘(𝐾 / (𝑃𝑘))))))
Distinct variable groups:   𝑃,𝑘   𝑘,𝑁   𝑘,𝐾

Proof of Theorem pcbc
StepHypRef Expression
1 simp3 1137 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℙ)
2 nnnn0 12531 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
323ad2ant1 1132 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℕ0)
43faccld 14320 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝑁) ∈ ℕ)
54nnzd 12638 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝑁) ∈ ℤ)
64nnne0d 12314 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝑁) ≠ 0)
7 fznn0sub 13593 . . . . . 6 (𝐾 ∈ (0...𝑁) → (𝑁𝐾) ∈ ℕ0)
873ad2ant2 1133 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁𝐾) ∈ ℕ0)
98faccld 14320 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘(𝑁𝐾)) ∈ ℕ)
10 elfznn0 13657 . . . . . 6 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
11103ad2ant2 1133 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝐾 ∈ ℕ0)
1211faccld 14320 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝐾) ∈ ℕ)
139, 12nnmulcld 12317 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → ((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℕ)
14 pcdiv 16886 . . 3 ((𝑃 ∈ ℙ ∧ ((!‘𝑁) ∈ ℤ ∧ (!‘𝑁) ≠ 0) ∧ ((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℕ) → (𝑃 pCnt ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾)))) = ((𝑃 pCnt (!‘𝑁)) − (𝑃 pCnt ((!‘(𝑁𝐾)) · (!‘𝐾)))))
151, 5, 6, 13, 14syl121anc 1374 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾)))) = ((𝑃 pCnt (!‘𝑁)) − (𝑃 pCnt ((!‘(𝑁𝐾)) · (!‘𝐾)))))
16 bcval2 14341 . . . 4 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
17163ad2ant2 1133 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
1817oveq2d 7447 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (𝑁C𝐾)) = (𝑃 pCnt ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾)))))
19 fzfid 14011 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (1...𝑁) ∈ Fin)
20 nnre 12271 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
21203ad2ant1 1132 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℝ)
2221adantr 480 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑁 ∈ ℝ)
23 simpl3 1192 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑃 ∈ ℙ)
24 prmnn 16708 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2523, 24syl 17 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑃 ∈ ℕ)
26 elfznn 13590 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
2726nnnn0d 12585 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ0)
2827adantl 481 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ0)
2925, 28nnexpcld 14281 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑃𝑘) ∈ ℕ)
3022, 29nndivred 12318 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑁 / (𝑃𝑘)) ∈ ℝ)
3130flcld 13835 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℤ)
3231zcnd 12721 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℂ)
3311nn0red 12586 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝐾 ∈ ℝ)
3421, 33resubcld 11689 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁𝐾) ∈ ℝ)
3534adantr 480 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑁𝐾) ∈ ℝ)
3635, 29nndivred 12318 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → ((𝑁𝐾) / (𝑃𝑘)) ∈ ℝ)
3736flcld 13835 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘((𝑁𝐾) / (𝑃𝑘))) ∈ ℤ)
3837zcnd 12721 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘((𝑁𝐾) / (𝑃𝑘))) ∈ ℂ)
3933adantr 480 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → 𝐾 ∈ ℝ)
4039, 29nndivred 12318 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (𝐾 / (𝑃𝑘)) ∈ ℝ)
4140flcld 13835 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘(𝐾 / (𝑃𝑘))) ∈ ℤ)
4241zcnd 12721 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘(𝐾 / (𝑃𝑘))) ∈ ℂ)
4338, 42addcld 11278 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → ((⌊‘((𝑁𝐾) / (𝑃𝑘))) + (⌊‘(𝐾 / (𝑃𝑘)))) ∈ ℂ)
4419, 32, 43fsumsub 15821 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...𝑁)((⌊‘(𝑁 / (𝑃𝑘))) − ((⌊‘((𝑁𝐾) / (𝑃𝑘))) + (⌊‘(𝐾 / (𝑃𝑘))))) = (Σ𝑘 ∈ (1...𝑁)(⌊‘(𝑁 / (𝑃𝑘))) − Σ𝑘 ∈ (1...𝑁)((⌊‘((𝑁𝐾) / (𝑃𝑘))) + (⌊‘(𝐾 / (𝑃𝑘))))))
453nn0zd 12637 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℤ)
46 uzid 12891 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
4745, 46syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ (ℤ𝑁))
48 pcfac 16933 . . . . 5 ((𝑁 ∈ ℕ0𝑁 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑁)(⌊‘(𝑁 / (𝑃𝑘))))
493, 47, 1, 48syl3anc 1370 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑁)(⌊‘(𝑁 / (𝑃𝑘))))
5011nn0ge0d 12588 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 0 ≤ 𝐾)
5121, 33subge02d 11853 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (0 ≤ 𝐾 ↔ (𝑁𝐾) ≤ 𝑁))
5250, 51mpbid 232 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁𝐾) ≤ 𝑁)
5311nn0zd 12637 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝐾 ∈ ℤ)
5445, 53zsubcld 12725 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁𝐾) ∈ ℤ)
55 eluz 12890 . . . . . . . . 9 (((𝑁𝐾) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ‘(𝑁𝐾)) ↔ (𝑁𝐾) ≤ 𝑁))
5654, 45, 55syl2anc 584 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 ∈ (ℤ‘(𝑁𝐾)) ↔ (𝑁𝐾) ≤ 𝑁))
5752, 56mpbird 257 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ (ℤ‘(𝑁𝐾)))
58 pcfac 16933 . . . . . . 7 (((𝑁𝐾) ∈ ℕ0𝑁 ∈ (ℤ‘(𝑁𝐾)) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘(𝑁𝐾))) = Σ𝑘 ∈ (1...𝑁)(⌊‘((𝑁𝐾) / (𝑃𝑘))))
598, 57, 1, 58syl3anc 1370 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘(𝑁𝐾))) = Σ𝑘 ∈ (1...𝑁)(⌊‘((𝑁𝐾) / (𝑃𝑘))))
60 elfzuz3 13558 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ (ℤ𝐾))
61603ad2ant2 1133 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ (ℤ𝐾))
62 pcfac 16933 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ (ℤ𝐾) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝐾)) = Σ𝑘 ∈ (1...𝑁)(⌊‘(𝐾 / (𝑃𝑘))))
6311, 61, 1, 62syl3anc 1370 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝐾)) = Σ𝑘 ∈ (1...𝑁)(⌊‘(𝐾 / (𝑃𝑘))))
6459, 63oveq12d 7449 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → ((𝑃 pCnt (!‘(𝑁𝐾))) + (𝑃 pCnt (!‘𝐾))) = (Σ𝑘 ∈ (1...𝑁)(⌊‘((𝑁𝐾) / (𝑃𝑘))) + Σ𝑘 ∈ (1...𝑁)(⌊‘(𝐾 / (𝑃𝑘)))))
659nnzd 12638 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘(𝑁𝐾)) ∈ ℤ)
669nnne0d 12314 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘(𝑁𝐾)) ≠ 0)
6712nnzd 12638 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝐾) ∈ ℤ)
6812nnne0d 12314 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝐾) ≠ 0)
69 pcmul 16885 . . . . . 6 ((𝑃 ∈ ℙ ∧ ((!‘(𝑁𝐾)) ∈ ℤ ∧ (!‘(𝑁𝐾)) ≠ 0) ∧ ((!‘𝐾) ∈ ℤ ∧ (!‘𝐾) ≠ 0)) → (𝑃 pCnt ((!‘(𝑁𝐾)) · (!‘𝐾))) = ((𝑃 pCnt (!‘(𝑁𝐾))) + (𝑃 pCnt (!‘𝐾))))
701, 65, 66, 67, 68, 69syl122anc 1378 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((!‘(𝑁𝐾)) · (!‘𝐾))) = ((𝑃 pCnt (!‘(𝑁𝐾))) + (𝑃 pCnt (!‘𝐾))))
7119, 38, 42fsumadd 15773 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...𝑁)((⌊‘((𝑁𝐾) / (𝑃𝑘))) + (⌊‘(𝐾 / (𝑃𝑘)))) = (Σ𝑘 ∈ (1...𝑁)(⌊‘((𝑁𝐾) / (𝑃𝑘))) + Σ𝑘 ∈ (1...𝑁)(⌊‘(𝐾 / (𝑃𝑘)))))
7264, 70, 713eqtr4d 2785 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((!‘(𝑁𝐾)) · (!‘𝐾))) = Σ𝑘 ∈ (1...𝑁)((⌊‘((𝑁𝐾) / (𝑃𝑘))) + (⌊‘(𝐾 / (𝑃𝑘)))))
7349, 72oveq12d 7449 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → ((𝑃 pCnt (!‘𝑁)) − (𝑃 pCnt ((!‘(𝑁𝐾)) · (!‘𝐾)))) = (Σ𝑘 ∈ (1...𝑁)(⌊‘(𝑁 / (𝑃𝑘))) − Σ𝑘 ∈ (1...𝑁)((⌊‘((𝑁𝐾) / (𝑃𝑘))) + (⌊‘(𝐾 / (𝑃𝑘))))))
7444, 73eqtr4d 2778 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...𝑁)((⌊‘(𝑁 / (𝑃𝑘))) − ((⌊‘((𝑁𝐾) / (𝑃𝑘))) + (⌊‘(𝐾 / (𝑃𝑘))))) = ((𝑃 pCnt (!‘𝑁)) − (𝑃 pCnt ((!‘(𝑁𝐾)) · (!‘𝐾)))))
7515, 18, 743eqtr4d 2785 1 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (𝑁C𝐾)) = Σ𝑘 ∈ (1...𝑁)((⌊‘(𝑁 / (𝑃𝑘))) − ((⌊‘((𝑁𝐾) / (𝑃𝑘))) + (⌊‘(𝐾 / (𝑃𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938   class class class wbr 5148  cfv 6563  (class class class)co 7431  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  cle 11294  cmin 11490   / cdiv 11918  cn 12264  0cn0 12524  cz 12611  cuz 12876  ...cfz 13544  cfl 13827  cexp 14099  !cfa 14309  Ccbc 14338  Σcsu 15719  cprime 16705   pCnt cpc 16870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-dvds 16288  df-gcd 16529  df-prm 16706  df-pc 16871
This theorem is referenced by:  pcbcctr  27335
  Copyright terms: Public domain W3C validator