Proof of Theorem pcbc
Step | Hyp | Ref
| Expression |
1 | | simp3 1135 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℙ) |
2 | | nnnn0 11954 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
3 | 2 | 3ad2ant1 1130 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈
ℕ0) |
4 | 3 | faccld 13707 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝑁) ∈
ℕ) |
5 | 4 | nnzd 12138 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝑁) ∈
ℤ) |
6 | 4 | nnne0d 11737 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝑁) ≠ 0) |
7 | | fznn0sub 13001 |
. . . . . 6
⊢ (𝐾 ∈ (0...𝑁) → (𝑁 − 𝐾) ∈
ℕ0) |
8 | 7 | 3ad2ant2 1131 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 − 𝐾) ∈
ℕ0) |
9 | 8 | faccld 13707 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘(𝑁 − 𝐾)) ∈ ℕ) |
10 | | elfznn0 13062 |
. . . . . 6
⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈
ℕ0) |
11 | 10 | 3ad2ant2 1131 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝐾 ∈
ℕ0) |
12 | 11 | faccld 13707 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝐾) ∈
ℕ) |
13 | 9, 12 | nnmulcld 11740 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → ((!‘(𝑁 − 𝐾)) · (!‘𝐾)) ∈ ℕ) |
14 | | pcdiv 16257 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧
((!‘𝑁) ∈ ℤ
∧ (!‘𝑁) ≠ 0)
∧ ((!‘(𝑁 −
𝐾)) · (!‘𝐾)) ∈ ℕ) → (𝑃 pCnt ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾)))) = ((𝑃 pCnt (!‘𝑁)) − (𝑃 pCnt ((!‘(𝑁 − 𝐾)) · (!‘𝐾))))) |
15 | 1, 5, 6, 13, 14 | syl121anc 1372 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾)))) = ((𝑃 pCnt (!‘𝑁)) − (𝑃 pCnt ((!‘(𝑁 − 𝐾)) · (!‘𝐾))))) |
16 | | bcval2 13728 |
. . . 4
⊢ (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾)))) |
17 | 16 | 3ad2ant2 1131 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾)))) |
18 | 17 | oveq2d 7172 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (𝑁C𝐾)) = (𝑃 pCnt ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾))))) |
19 | | fzfid 13403 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (1...𝑁) ∈ Fin) |
20 | | nnre 11694 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ) |
21 | 20 | 3ad2ant1 1130 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℝ) |
22 | 21 | adantr 484 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑁 ∈ ℝ) |
23 | | simpl3 1190 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑃 ∈ ℙ) |
24 | | prmnn 16083 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
25 | 23, 24 | syl 17 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑃 ∈ ℕ) |
26 | | elfznn 12998 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ) |
27 | 26 | nnnn0d 12007 |
. . . . . . . . 9
⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ0) |
28 | 27 | adantl 485 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ0) |
29 | 25, 28 | nnexpcld 13669 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑃↑𝑘) ∈ ℕ) |
30 | 22, 29 | nndivred 11741 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑁 / (𝑃↑𝑘)) ∈ ℝ) |
31 | 30 | flcld 13230 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘(𝑁 / (𝑃↑𝑘))) ∈ ℤ) |
32 | 31 | zcnd 12140 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘(𝑁 / (𝑃↑𝑘))) ∈ ℂ) |
33 | 11 | nn0red 12008 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝐾 ∈ ℝ) |
34 | 21, 33 | resubcld 11119 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 − 𝐾) ∈ ℝ) |
35 | 34 | adantr 484 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑁 − 𝐾) ∈ ℝ) |
36 | 35, 29 | nndivred 11741 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → ((𝑁 − 𝐾) / (𝑃↑𝑘)) ∈ ℝ) |
37 | 36 | flcld 13230 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘))) ∈ ℤ) |
38 | 37 | zcnd 12140 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘))) ∈ ℂ) |
39 | 33 | adantr 484 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → 𝐾 ∈ ℝ) |
40 | 39, 29 | nndivred 11741 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (𝐾 / (𝑃↑𝑘)) ∈ ℝ) |
41 | 40 | flcld 13230 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘(𝐾 / (𝑃↑𝑘))) ∈ ℤ) |
42 | 41 | zcnd 12140 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘(𝐾 / (𝑃↑𝑘))) ∈ ℂ) |
43 | 38, 42 | addcld 10711 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → ((⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘))) + (⌊‘(𝐾 / (𝑃↑𝑘)))) ∈ ℂ) |
44 | 19, 32, 43 | fsumsub 15204 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...𝑁)((⌊‘(𝑁 / (𝑃↑𝑘))) − ((⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘))) + (⌊‘(𝐾 / (𝑃↑𝑘))))) = (Σ𝑘 ∈ (1...𝑁)(⌊‘(𝑁 / (𝑃↑𝑘))) − Σ𝑘 ∈ (1...𝑁)((⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘))) + (⌊‘(𝐾 / (𝑃↑𝑘)))))) |
45 | 3 | nn0zd 12137 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℤ) |
46 | | uzid 12310 |
. . . . . 6
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
(ℤ≥‘𝑁)) |
47 | 45, 46 | syl 17 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ (ℤ≥‘𝑁)) |
48 | | pcfac 16303 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑁 ∈
(ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑁)(⌊‘(𝑁 / (𝑃↑𝑘)))) |
49 | 3, 47, 1, 48 | syl3anc 1368 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑁)(⌊‘(𝑁 / (𝑃↑𝑘)))) |
50 | 11 | nn0ge0d 12010 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 0 ≤ 𝐾) |
51 | 21, 33 | subge02d 11283 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (0 ≤ 𝐾 ↔ (𝑁 − 𝐾) ≤ 𝑁)) |
52 | 50, 51 | mpbid 235 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 − 𝐾) ≤ 𝑁) |
53 | 11 | nn0zd 12137 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝐾 ∈ ℤ) |
54 | 45, 53 | zsubcld 12144 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 − 𝐾) ∈ ℤ) |
55 | | eluz 12309 |
. . . . . . . . 9
⊢ (((𝑁 − 𝐾) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘(𝑁 − 𝐾)) ↔ (𝑁 − 𝐾) ≤ 𝑁)) |
56 | 54, 45, 55 | syl2anc 587 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 ∈ (ℤ≥‘(𝑁 − 𝐾)) ↔ (𝑁 − 𝐾) ≤ 𝑁)) |
57 | 52, 56 | mpbird 260 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ (ℤ≥‘(𝑁 − 𝐾))) |
58 | | pcfac 16303 |
. . . . . . 7
⊢ (((𝑁 − 𝐾) ∈ ℕ0 ∧ 𝑁 ∈
(ℤ≥‘(𝑁 − 𝐾)) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘(𝑁 − 𝐾))) = Σ𝑘 ∈ (1...𝑁)(⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘)))) |
59 | 8, 57, 1, 58 | syl3anc 1368 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘(𝑁 − 𝐾))) = Σ𝑘 ∈ (1...𝑁)(⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘)))) |
60 | | elfzuz3 12966 |
. . . . . . . 8
⊢ (𝐾 ∈ (0...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) |
61 | 60 | 3ad2ant2 1131 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ (ℤ≥‘𝐾)) |
62 | | pcfac 16303 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ0
∧ 𝑁 ∈
(ℤ≥‘𝐾) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝐾)) = Σ𝑘 ∈ (1...𝑁)(⌊‘(𝐾 / (𝑃↑𝑘)))) |
63 | 11, 61, 1, 62 | syl3anc 1368 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝐾)) = Σ𝑘 ∈ (1...𝑁)(⌊‘(𝐾 / (𝑃↑𝑘)))) |
64 | 59, 63 | oveq12d 7174 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → ((𝑃 pCnt (!‘(𝑁 − 𝐾))) + (𝑃 pCnt (!‘𝐾))) = (Σ𝑘 ∈ (1...𝑁)(⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘))) + Σ𝑘 ∈ (1...𝑁)(⌊‘(𝐾 / (𝑃↑𝑘))))) |
65 | 9 | nnzd 12138 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘(𝑁 − 𝐾)) ∈ ℤ) |
66 | 9 | nnne0d 11737 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘(𝑁 − 𝐾)) ≠ 0) |
67 | 12 | nnzd 12138 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝐾) ∈
ℤ) |
68 | 12 | nnne0d 11737 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝐾) ≠ 0) |
69 | | pcmul 16256 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧
((!‘(𝑁 − 𝐾)) ∈ ℤ ∧
(!‘(𝑁 − 𝐾)) ≠ 0) ∧ ((!‘𝐾) ∈ ℤ ∧
(!‘𝐾) ≠ 0)) →
(𝑃 pCnt ((!‘(𝑁 − 𝐾)) · (!‘𝐾))) = ((𝑃 pCnt (!‘(𝑁 − 𝐾))) + (𝑃 pCnt (!‘𝐾)))) |
70 | 1, 65, 66, 67, 68, 69 | syl122anc 1376 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((!‘(𝑁 − 𝐾)) · (!‘𝐾))) = ((𝑃 pCnt (!‘(𝑁 − 𝐾))) + (𝑃 pCnt (!‘𝐾)))) |
71 | 19, 38, 42 | fsumadd 15157 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...𝑁)((⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘))) + (⌊‘(𝐾 / (𝑃↑𝑘)))) = (Σ𝑘 ∈ (1...𝑁)(⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘))) + Σ𝑘 ∈ (1...𝑁)(⌊‘(𝐾 / (𝑃↑𝑘))))) |
72 | 64, 70, 71 | 3eqtr4d 2803 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((!‘(𝑁 − 𝐾)) · (!‘𝐾))) = Σ𝑘 ∈ (1...𝑁)((⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘))) + (⌊‘(𝐾 / (𝑃↑𝑘))))) |
73 | 49, 72 | oveq12d 7174 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → ((𝑃 pCnt (!‘𝑁)) − (𝑃 pCnt ((!‘(𝑁 − 𝐾)) · (!‘𝐾)))) = (Σ𝑘 ∈ (1...𝑁)(⌊‘(𝑁 / (𝑃↑𝑘))) − Σ𝑘 ∈ (1...𝑁)((⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘))) + (⌊‘(𝐾 / (𝑃↑𝑘)))))) |
74 | 44, 73 | eqtr4d 2796 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...𝑁)((⌊‘(𝑁 / (𝑃↑𝑘))) − ((⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘))) + (⌊‘(𝐾 / (𝑃↑𝑘))))) = ((𝑃 pCnt (!‘𝑁)) − (𝑃 pCnt ((!‘(𝑁 − 𝐾)) · (!‘𝐾))))) |
75 | 15, 18, 74 | 3eqtr4d 2803 |
1
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (𝑁C𝐾)) = Σ𝑘 ∈ (1...𝑁)((⌊‘(𝑁 / (𝑃↑𝑘))) − ((⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘))) + (⌊‘(𝐾 / (𝑃↑𝑘)))))) |