MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcbc Structured version   Visualization version   GIF version

Theorem pcbc 16529
Description: Calculate the prime count of a binomial coefficient. (Contributed by Mario Carneiro, 11-Mar-2014.) (Revised by Mario Carneiro, 21-May-2014.)
Assertion
Ref Expression
pcbc ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (𝑁C𝐾)) = Σ𝑘 ∈ (1...𝑁)((⌊‘(𝑁 / (𝑃𝑘))) − ((⌊‘((𝑁𝐾) / (𝑃𝑘))) + (⌊‘(𝐾 / (𝑃𝑘))))))
Distinct variable groups:   𝑃,𝑘   𝑘,𝑁   𝑘,𝐾

Proof of Theorem pcbc
StepHypRef Expression
1 simp3 1136 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℙ)
2 nnnn0 12170 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
323ad2ant1 1131 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℕ0)
43faccld 13926 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝑁) ∈ ℕ)
54nnzd 12354 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝑁) ∈ ℤ)
64nnne0d 11953 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝑁) ≠ 0)
7 fznn0sub 13217 . . . . . 6 (𝐾 ∈ (0...𝑁) → (𝑁𝐾) ∈ ℕ0)
873ad2ant2 1132 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁𝐾) ∈ ℕ0)
98faccld 13926 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘(𝑁𝐾)) ∈ ℕ)
10 elfznn0 13278 . . . . . 6 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
11103ad2ant2 1132 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝐾 ∈ ℕ0)
1211faccld 13926 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝐾) ∈ ℕ)
139, 12nnmulcld 11956 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → ((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℕ)
14 pcdiv 16481 . . 3 ((𝑃 ∈ ℙ ∧ ((!‘𝑁) ∈ ℤ ∧ (!‘𝑁) ≠ 0) ∧ ((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℕ) → (𝑃 pCnt ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾)))) = ((𝑃 pCnt (!‘𝑁)) − (𝑃 pCnt ((!‘(𝑁𝐾)) · (!‘𝐾)))))
151, 5, 6, 13, 14syl121anc 1373 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾)))) = ((𝑃 pCnt (!‘𝑁)) − (𝑃 pCnt ((!‘(𝑁𝐾)) · (!‘𝐾)))))
16 bcval2 13947 . . . 4 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
17163ad2ant2 1132 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
1817oveq2d 7271 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (𝑁C𝐾)) = (𝑃 pCnt ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾)))))
19 fzfid 13621 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (1...𝑁) ∈ Fin)
20 nnre 11910 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
21203ad2ant1 1131 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℝ)
2221adantr 480 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑁 ∈ ℝ)
23 simpl3 1191 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑃 ∈ ℙ)
24 prmnn 16307 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2523, 24syl 17 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑃 ∈ ℕ)
26 elfznn 13214 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
2726nnnn0d 12223 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ0)
2827adantl 481 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ0)
2925, 28nnexpcld 13888 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑃𝑘) ∈ ℕ)
3022, 29nndivred 11957 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑁 / (𝑃𝑘)) ∈ ℝ)
3130flcld 13446 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℤ)
3231zcnd 12356 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℂ)
3311nn0red 12224 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝐾 ∈ ℝ)
3421, 33resubcld 11333 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁𝐾) ∈ ℝ)
3534adantr 480 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑁𝐾) ∈ ℝ)
3635, 29nndivred 11957 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → ((𝑁𝐾) / (𝑃𝑘)) ∈ ℝ)
3736flcld 13446 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘((𝑁𝐾) / (𝑃𝑘))) ∈ ℤ)
3837zcnd 12356 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘((𝑁𝐾) / (𝑃𝑘))) ∈ ℂ)
3933adantr 480 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → 𝐾 ∈ ℝ)
4039, 29nndivred 11957 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (𝐾 / (𝑃𝑘)) ∈ ℝ)
4140flcld 13446 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘(𝐾 / (𝑃𝑘))) ∈ ℤ)
4241zcnd 12356 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘(𝐾 / (𝑃𝑘))) ∈ ℂ)
4338, 42addcld 10925 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → ((⌊‘((𝑁𝐾) / (𝑃𝑘))) + (⌊‘(𝐾 / (𝑃𝑘)))) ∈ ℂ)
4419, 32, 43fsumsub 15428 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...𝑁)((⌊‘(𝑁 / (𝑃𝑘))) − ((⌊‘((𝑁𝐾) / (𝑃𝑘))) + (⌊‘(𝐾 / (𝑃𝑘))))) = (Σ𝑘 ∈ (1...𝑁)(⌊‘(𝑁 / (𝑃𝑘))) − Σ𝑘 ∈ (1...𝑁)((⌊‘((𝑁𝐾) / (𝑃𝑘))) + (⌊‘(𝐾 / (𝑃𝑘))))))
453nn0zd 12353 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℤ)
46 uzid 12526 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
4745, 46syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ (ℤ𝑁))
48 pcfac 16528 . . . . 5 ((𝑁 ∈ ℕ0𝑁 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑁)(⌊‘(𝑁 / (𝑃𝑘))))
493, 47, 1, 48syl3anc 1369 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑁)(⌊‘(𝑁 / (𝑃𝑘))))
5011nn0ge0d 12226 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 0 ≤ 𝐾)
5121, 33subge02d 11497 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (0 ≤ 𝐾 ↔ (𝑁𝐾) ≤ 𝑁))
5250, 51mpbid 231 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁𝐾) ≤ 𝑁)
5311nn0zd 12353 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝐾 ∈ ℤ)
5445, 53zsubcld 12360 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁𝐾) ∈ ℤ)
55 eluz 12525 . . . . . . . . 9 (((𝑁𝐾) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ‘(𝑁𝐾)) ↔ (𝑁𝐾) ≤ 𝑁))
5654, 45, 55syl2anc 583 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 ∈ (ℤ‘(𝑁𝐾)) ↔ (𝑁𝐾) ≤ 𝑁))
5752, 56mpbird 256 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ (ℤ‘(𝑁𝐾)))
58 pcfac 16528 . . . . . . 7 (((𝑁𝐾) ∈ ℕ0𝑁 ∈ (ℤ‘(𝑁𝐾)) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘(𝑁𝐾))) = Σ𝑘 ∈ (1...𝑁)(⌊‘((𝑁𝐾) / (𝑃𝑘))))
598, 57, 1, 58syl3anc 1369 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘(𝑁𝐾))) = Σ𝑘 ∈ (1...𝑁)(⌊‘((𝑁𝐾) / (𝑃𝑘))))
60 elfzuz3 13182 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ (ℤ𝐾))
61603ad2ant2 1132 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ (ℤ𝐾))
62 pcfac 16528 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ (ℤ𝐾) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝐾)) = Σ𝑘 ∈ (1...𝑁)(⌊‘(𝐾 / (𝑃𝑘))))
6311, 61, 1, 62syl3anc 1369 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝐾)) = Σ𝑘 ∈ (1...𝑁)(⌊‘(𝐾 / (𝑃𝑘))))
6459, 63oveq12d 7273 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → ((𝑃 pCnt (!‘(𝑁𝐾))) + (𝑃 pCnt (!‘𝐾))) = (Σ𝑘 ∈ (1...𝑁)(⌊‘((𝑁𝐾) / (𝑃𝑘))) + Σ𝑘 ∈ (1...𝑁)(⌊‘(𝐾 / (𝑃𝑘)))))
659nnzd 12354 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘(𝑁𝐾)) ∈ ℤ)
669nnne0d 11953 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘(𝑁𝐾)) ≠ 0)
6712nnzd 12354 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝐾) ∈ ℤ)
6812nnne0d 11953 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝐾) ≠ 0)
69 pcmul 16480 . . . . . 6 ((𝑃 ∈ ℙ ∧ ((!‘(𝑁𝐾)) ∈ ℤ ∧ (!‘(𝑁𝐾)) ≠ 0) ∧ ((!‘𝐾) ∈ ℤ ∧ (!‘𝐾) ≠ 0)) → (𝑃 pCnt ((!‘(𝑁𝐾)) · (!‘𝐾))) = ((𝑃 pCnt (!‘(𝑁𝐾))) + (𝑃 pCnt (!‘𝐾))))
701, 65, 66, 67, 68, 69syl122anc 1377 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((!‘(𝑁𝐾)) · (!‘𝐾))) = ((𝑃 pCnt (!‘(𝑁𝐾))) + (𝑃 pCnt (!‘𝐾))))
7119, 38, 42fsumadd 15380 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...𝑁)((⌊‘((𝑁𝐾) / (𝑃𝑘))) + (⌊‘(𝐾 / (𝑃𝑘)))) = (Σ𝑘 ∈ (1...𝑁)(⌊‘((𝑁𝐾) / (𝑃𝑘))) + Σ𝑘 ∈ (1...𝑁)(⌊‘(𝐾 / (𝑃𝑘)))))
7264, 70, 713eqtr4d 2788 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((!‘(𝑁𝐾)) · (!‘𝐾))) = Σ𝑘 ∈ (1...𝑁)((⌊‘((𝑁𝐾) / (𝑃𝑘))) + (⌊‘(𝐾 / (𝑃𝑘)))))
7349, 72oveq12d 7273 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → ((𝑃 pCnt (!‘𝑁)) − (𝑃 pCnt ((!‘(𝑁𝐾)) · (!‘𝐾)))) = (Σ𝑘 ∈ (1...𝑁)(⌊‘(𝑁 / (𝑃𝑘))) − Σ𝑘 ∈ (1...𝑁)((⌊‘((𝑁𝐾) / (𝑃𝑘))) + (⌊‘(𝐾 / (𝑃𝑘))))))
7444, 73eqtr4d 2781 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...𝑁)((⌊‘(𝑁 / (𝑃𝑘))) − ((⌊‘((𝑁𝐾) / (𝑃𝑘))) + (⌊‘(𝐾 / (𝑃𝑘))))) = ((𝑃 pCnt (!‘𝑁)) − (𝑃 pCnt ((!‘(𝑁𝐾)) · (!‘𝐾)))))
7515, 18, 743eqtr4d 2788 1 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (𝑁C𝐾)) = Σ𝑘 ∈ (1...𝑁)((⌊‘(𝑁 / (𝑃𝑘))) − ((⌊‘((𝑁𝐾) / (𝑃𝑘))) + (⌊‘(𝐾 / (𝑃𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cle 10941  cmin 11135   / cdiv 11562  cn 11903  0cn0 12163  cz 12249  cuz 12511  ...cfz 13168  cfl 13438  cexp 13710  !cfa 13915  Ccbc 13944  Σcsu 15325  cprime 16304   pCnt cpc 16465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-dvds 15892  df-gcd 16130  df-prm 16305  df-pc 16466
This theorem is referenced by:  pcbcctr  26329
  Copyright terms: Public domain W3C validator