MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcbc Structured version   Visualization version   GIF version

Theorem pcbc 16878
Description: Calculate the prime count of a binomial coefficient. (Contributed by Mario Carneiro, 11-Mar-2014.) (Revised by Mario Carneiro, 21-May-2014.)
Assertion
Ref Expression
pcbc ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (𝑁C𝐾)) = Σ𝑘 ∈ (1...𝑁)((⌊‘(𝑁 / (𝑃𝑘))) − ((⌊‘((𝑁𝐾) / (𝑃𝑘))) + (⌊‘(𝐾 / (𝑃𝑘))))))
Distinct variable groups:   𝑃,𝑘   𝑘,𝑁   𝑘,𝐾

Proof of Theorem pcbc
StepHypRef Expression
1 simp3 1138 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℙ)
2 nnnn0 12456 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
323ad2ant1 1133 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℕ0)
43faccld 14256 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝑁) ∈ ℕ)
54nnzd 12563 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝑁) ∈ ℤ)
64nnne0d 12243 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝑁) ≠ 0)
7 fznn0sub 13524 . . . . . 6 (𝐾 ∈ (0...𝑁) → (𝑁𝐾) ∈ ℕ0)
873ad2ant2 1134 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁𝐾) ∈ ℕ0)
98faccld 14256 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘(𝑁𝐾)) ∈ ℕ)
10 elfznn0 13588 . . . . . 6 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
11103ad2ant2 1134 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝐾 ∈ ℕ0)
1211faccld 14256 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝐾) ∈ ℕ)
139, 12nnmulcld 12246 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → ((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℕ)
14 pcdiv 16830 . . 3 ((𝑃 ∈ ℙ ∧ ((!‘𝑁) ∈ ℤ ∧ (!‘𝑁) ≠ 0) ∧ ((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℕ) → (𝑃 pCnt ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾)))) = ((𝑃 pCnt (!‘𝑁)) − (𝑃 pCnt ((!‘(𝑁𝐾)) · (!‘𝐾)))))
151, 5, 6, 13, 14syl121anc 1377 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾)))) = ((𝑃 pCnt (!‘𝑁)) − (𝑃 pCnt ((!‘(𝑁𝐾)) · (!‘𝐾)))))
16 bcval2 14277 . . . 4 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
17163ad2ant2 1134 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
1817oveq2d 7406 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (𝑁C𝐾)) = (𝑃 pCnt ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾)))))
19 fzfid 13945 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (1...𝑁) ∈ Fin)
20 nnre 12200 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
21203ad2ant1 1133 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℝ)
2221adantr 480 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑁 ∈ ℝ)
23 simpl3 1194 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑃 ∈ ℙ)
24 prmnn 16651 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2523, 24syl 17 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑃 ∈ ℕ)
26 elfznn 13521 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
2726nnnn0d 12510 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ0)
2827adantl 481 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ0)
2925, 28nnexpcld 14217 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑃𝑘) ∈ ℕ)
3022, 29nndivred 12247 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑁 / (𝑃𝑘)) ∈ ℝ)
3130flcld 13767 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℤ)
3231zcnd 12646 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℂ)
3311nn0red 12511 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝐾 ∈ ℝ)
3421, 33resubcld 11613 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁𝐾) ∈ ℝ)
3534adantr 480 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑁𝐾) ∈ ℝ)
3635, 29nndivred 12247 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → ((𝑁𝐾) / (𝑃𝑘)) ∈ ℝ)
3736flcld 13767 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘((𝑁𝐾) / (𝑃𝑘))) ∈ ℤ)
3837zcnd 12646 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘((𝑁𝐾) / (𝑃𝑘))) ∈ ℂ)
3933adantr 480 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → 𝐾 ∈ ℝ)
4039, 29nndivred 12247 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (𝐾 / (𝑃𝑘)) ∈ ℝ)
4140flcld 13767 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘(𝐾 / (𝑃𝑘))) ∈ ℤ)
4241zcnd 12646 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘(𝐾 / (𝑃𝑘))) ∈ ℂ)
4338, 42addcld 11200 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → ((⌊‘((𝑁𝐾) / (𝑃𝑘))) + (⌊‘(𝐾 / (𝑃𝑘)))) ∈ ℂ)
4419, 32, 43fsumsub 15761 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...𝑁)((⌊‘(𝑁 / (𝑃𝑘))) − ((⌊‘((𝑁𝐾) / (𝑃𝑘))) + (⌊‘(𝐾 / (𝑃𝑘))))) = (Σ𝑘 ∈ (1...𝑁)(⌊‘(𝑁 / (𝑃𝑘))) − Σ𝑘 ∈ (1...𝑁)((⌊‘((𝑁𝐾) / (𝑃𝑘))) + (⌊‘(𝐾 / (𝑃𝑘))))))
453nn0zd 12562 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℤ)
46 uzid 12815 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
4745, 46syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ (ℤ𝑁))
48 pcfac 16877 . . . . 5 ((𝑁 ∈ ℕ0𝑁 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑁)(⌊‘(𝑁 / (𝑃𝑘))))
493, 47, 1, 48syl3anc 1373 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑁)(⌊‘(𝑁 / (𝑃𝑘))))
5011nn0ge0d 12513 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 0 ≤ 𝐾)
5121, 33subge02d 11777 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (0 ≤ 𝐾 ↔ (𝑁𝐾) ≤ 𝑁))
5250, 51mpbid 232 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁𝐾) ≤ 𝑁)
5311nn0zd 12562 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝐾 ∈ ℤ)
5445, 53zsubcld 12650 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁𝐾) ∈ ℤ)
55 eluz 12814 . . . . . . . . 9 (((𝑁𝐾) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ‘(𝑁𝐾)) ↔ (𝑁𝐾) ≤ 𝑁))
5654, 45, 55syl2anc 584 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 ∈ (ℤ‘(𝑁𝐾)) ↔ (𝑁𝐾) ≤ 𝑁))
5752, 56mpbird 257 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ (ℤ‘(𝑁𝐾)))
58 pcfac 16877 . . . . . . 7 (((𝑁𝐾) ∈ ℕ0𝑁 ∈ (ℤ‘(𝑁𝐾)) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘(𝑁𝐾))) = Σ𝑘 ∈ (1...𝑁)(⌊‘((𝑁𝐾) / (𝑃𝑘))))
598, 57, 1, 58syl3anc 1373 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘(𝑁𝐾))) = Σ𝑘 ∈ (1...𝑁)(⌊‘((𝑁𝐾) / (𝑃𝑘))))
60 elfzuz3 13489 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ (ℤ𝐾))
61603ad2ant2 1134 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ (ℤ𝐾))
62 pcfac 16877 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ (ℤ𝐾) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝐾)) = Σ𝑘 ∈ (1...𝑁)(⌊‘(𝐾 / (𝑃𝑘))))
6311, 61, 1, 62syl3anc 1373 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝐾)) = Σ𝑘 ∈ (1...𝑁)(⌊‘(𝐾 / (𝑃𝑘))))
6459, 63oveq12d 7408 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → ((𝑃 pCnt (!‘(𝑁𝐾))) + (𝑃 pCnt (!‘𝐾))) = (Σ𝑘 ∈ (1...𝑁)(⌊‘((𝑁𝐾) / (𝑃𝑘))) + Σ𝑘 ∈ (1...𝑁)(⌊‘(𝐾 / (𝑃𝑘)))))
659nnzd 12563 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘(𝑁𝐾)) ∈ ℤ)
669nnne0d 12243 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘(𝑁𝐾)) ≠ 0)
6712nnzd 12563 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝐾) ∈ ℤ)
6812nnne0d 12243 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝐾) ≠ 0)
69 pcmul 16829 . . . . . 6 ((𝑃 ∈ ℙ ∧ ((!‘(𝑁𝐾)) ∈ ℤ ∧ (!‘(𝑁𝐾)) ≠ 0) ∧ ((!‘𝐾) ∈ ℤ ∧ (!‘𝐾) ≠ 0)) → (𝑃 pCnt ((!‘(𝑁𝐾)) · (!‘𝐾))) = ((𝑃 pCnt (!‘(𝑁𝐾))) + (𝑃 pCnt (!‘𝐾))))
701, 65, 66, 67, 68, 69syl122anc 1381 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((!‘(𝑁𝐾)) · (!‘𝐾))) = ((𝑃 pCnt (!‘(𝑁𝐾))) + (𝑃 pCnt (!‘𝐾))))
7119, 38, 42fsumadd 15713 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...𝑁)((⌊‘((𝑁𝐾) / (𝑃𝑘))) + (⌊‘(𝐾 / (𝑃𝑘)))) = (Σ𝑘 ∈ (1...𝑁)(⌊‘((𝑁𝐾) / (𝑃𝑘))) + Σ𝑘 ∈ (1...𝑁)(⌊‘(𝐾 / (𝑃𝑘)))))
7264, 70, 713eqtr4d 2775 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((!‘(𝑁𝐾)) · (!‘𝐾))) = Σ𝑘 ∈ (1...𝑁)((⌊‘((𝑁𝐾) / (𝑃𝑘))) + (⌊‘(𝐾 / (𝑃𝑘)))))
7349, 72oveq12d 7408 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → ((𝑃 pCnt (!‘𝑁)) − (𝑃 pCnt ((!‘(𝑁𝐾)) · (!‘𝐾)))) = (Σ𝑘 ∈ (1...𝑁)(⌊‘(𝑁 / (𝑃𝑘))) − Σ𝑘 ∈ (1...𝑁)((⌊‘((𝑁𝐾) / (𝑃𝑘))) + (⌊‘(𝐾 / (𝑃𝑘))))))
7444, 73eqtr4d 2768 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...𝑁)((⌊‘(𝑁 / (𝑃𝑘))) − ((⌊‘((𝑁𝐾) / (𝑃𝑘))) + (⌊‘(𝐾 / (𝑃𝑘))))) = ((𝑃 pCnt (!‘𝑁)) − (𝑃 pCnt ((!‘(𝑁𝐾)) · (!‘𝐾)))))
7515, 18, 743eqtr4d 2775 1 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (𝑁C𝐾)) = Σ𝑘 ∈ (1...𝑁)((⌊‘(𝑁 / (𝑃𝑘))) − ((⌊‘((𝑁𝐾) / (𝑃𝑘))) + (⌊‘(𝐾 / (𝑃𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  cfv 6514  (class class class)co 7390  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  cle 11216  cmin 11412   / cdiv 11842  cn 12193  0cn0 12449  cz 12536  cuz 12800  ...cfz 13475  cfl 13759  cexp 14033  !cfa 14245  Ccbc 14274  Σcsu 15659  cprime 16648   pCnt cpc 16814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-dvds 16230  df-gcd 16472  df-prm 16649  df-pc 16815
This theorem is referenced by:  pcbcctr  27194
  Copyright terms: Public domain W3C validator