Proof of Theorem pcbc
| Step | Hyp | Ref
| Expression |
| 1 | | simp3 1138 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℙ) |
| 2 | | nnnn0 12513 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
| 3 | 2 | 3ad2ant1 1133 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈
ℕ0) |
| 4 | 3 | faccld 14307 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝑁) ∈
ℕ) |
| 5 | 4 | nnzd 12620 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝑁) ∈
ℤ) |
| 6 | 4 | nnne0d 12295 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝑁) ≠ 0) |
| 7 | | fznn0sub 13578 |
. . . . . 6
⊢ (𝐾 ∈ (0...𝑁) → (𝑁 − 𝐾) ∈
ℕ0) |
| 8 | 7 | 3ad2ant2 1134 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 − 𝐾) ∈
ℕ0) |
| 9 | 8 | faccld 14307 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘(𝑁 − 𝐾)) ∈ ℕ) |
| 10 | | elfznn0 13642 |
. . . . . 6
⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈
ℕ0) |
| 11 | 10 | 3ad2ant2 1134 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝐾 ∈
ℕ0) |
| 12 | 11 | faccld 14307 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝐾) ∈
ℕ) |
| 13 | 9, 12 | nnmulcld 12298 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → ((!‘(𝑁 − 𝐾)) · (!‘𝐾)) ∈ ℕ) |
| 14 | | pcdiv 16877 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧
((!‘𝑁) ∈ ℤ
∧ (!‘𝑁) ≠ 0)
∧ ((!‘(𝑁 −
𝐾)) · (!‘𝐾)) ∈ ℕ) → (𝑃 pCnt ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾)))) = ((𝑃 pCnt (!‘𝑁)) − (𝑃 pCnt ((!‘(𝑁 − 𝐾)) · (!‘𝐾))))) |
| 15 | 1, 5, 6, 13, 14 | syl121anc 1377 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾)))) = ((𝑃 pCnt (!‘𝑁)) − (𝑃 pCnt ((!‘(𝑁 − 𝐾)) · (!‘𝐾))))) |
| 16 | | bcval2 14328 |
. . . 4
⊢ (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾)))) |
| 17 | 16 | 3ad2ant2 1134 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾)))) |
| 18 | 17 | oveq2d 7426 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (𝑁C𝐾)) = (𝑃 pCnt ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾))))) |
| 19 | | fzfid 13996 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (1...𝑁) ∈ Fin) |
| 20 | | nnre 12252 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ) |
| 21 | 20 | 3ad2ant1 1133 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℝ) |
| 22 | 21 | adantr 480 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑁 ∈ ℝ) |
| 23 | | simpl3 1194 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑃 ∈ ℙ) |
| 24 | | prmnn 16698 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
| 25 | 23, 24 | syl 17 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑃 ∈ ℕ) |
| 26 | | elfznn 13575 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ) |
| 27 | 26 | nnnn0d 12567 |
. . . . . . . . 9
⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ0) |
| 28 | 27 | adantl 481 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ0) |
| 29 | 25, 28 | nnexpcld 14268 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑃↑𝑘) ∈ ℕ) |
| 30 | 22, 29 | nndivred 12299 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑁 / (𝑃↑𝑘)) ∈ ℝ) |
| 31 | 30 | flcld 13820 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘(𝑁 / (𝑃↑𝑘))) ∈ ℤ) |
| 32 | 31 | zcnd 12703 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘(𝑁 / (𝑃↑𝑘))) ∈ ℂ) |
| 33 | 11 | nn0red 12568 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝐾 ∈ ℝ) |
| 34 | 21, 33 | resubcld 11670 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 − 𝐾) ∈ ℝ) |
| 35 | 34 | adantr 480 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑁 − 𝐾) ∈ ℝ) |
| 36 | 35, 29 | nndivred 12299 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → ((𝑁 − 𝐾) / (𝑃↑𝑘)) ∈ ℝ) |
| 37 | 36 | flcld 13820 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘))) ∈ ℤ) |
| 38 | 37 | zcnd 12703 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘))) ∈ ℂ) |
| 39 | 33 | adantr 480 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → 𝐾 ∈ ℝ) |
| 40 | 39, 29 | nndivred 12299 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (𝐾 / (𝑃↑𝑘)) ∈ ℝ) |
| 41 | 40 | flcld 13820 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘(𝐾 / (𝑃↑𝑘))) ∈ ℤ) |
| 42 | 41 | zcnd 12703 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘(𝐾 / (𝑃↑𝑘))) ∈ ℂ) |
| 43 | 38, 42 | addcld 11259 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → ((⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘))) + (⌊‘(𝐾 / (𝑃↑𝑘)))) ∈ ℂ) |
| 44 | 19, 32, 43 | fsumsub 15809 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...𝑁)((⌊‘(𝑁 / (𝑃↑𝑘))) − ((⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘))) + (⌊‘(𝐾 / (𝑃↑𝑘))))) = (Σ𝑘 ∈ (1...𝑁)(⌊‘(𝑁 / (𝑃↑𝑘))) − Σ𝑘 ∈ (1...𝑁)((⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘))) + (⌊‘(𝐾 / (𝑃↑𝑘)))))) |
| 45 | 3 | nn0zd 12619 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℤ) |
| 46 | | uzid 12872 |
. . . . . 6
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
(ℤ≥‘𝑁)) |
| 47 | 45, 46 | syl 17 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ (ℤ≥‘𝑁)) |
| 48 | | pcfac 16924 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑁 ∈
(ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑁)(⌊‘(𝑁 / (𝑃↑𝑘)))) |
| 49 | 3, 47, 1, 48 | syl3anc 1373 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑁)(⌊‘(𝑁 / (𝑃↑𝑘)))) |
| 50 | 11 | nn0ge0d 12570 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 0 ≤ 𝐾) |
| 51 | 21, 33 | subge02d 11834 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (0 ≤ 𝐾 ↔ (𝑁 − 𝐾) ≤ 𝑁)) |
| 52 | 50, 51 | mpbid 232 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 − 𝐾) ≤ 𝑁) |
| 53 | 11 | nn0zd 12619 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝐾 ∈ ℤ) |
| 54 | 45, 53 | zsubcld 12707 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 − 𝐾) ∈ ℤ) |
| 55 | | eluz 12871 |
. . . . . . . . 9
⊢ (((𝑁 − 𝐾) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘(𝑁 − 𝐾)) ↔ (𝑁 − 𝐾) ≤ 𝑁)) |
| 56 | 54, 45, 55 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 ∈ (ℤ≥‘(𝑁 − 𝐾)) ↔ (𝑁 − 𝐾) ≤ 𝑁)) |
| 57 | 52, 56 | mpbird 257 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ (ℤ≥‘(𝑁 − 𝐾))) |
| 58 | | pcfac 16924 |
. . . . . . 7
⊢ (((𝑁 − 𝐾) ∈ ℕ0 ∧ 𝑁 ∈
(ℤ≥‘(𝑁 − 𝐾)) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘(𝑁 − 𝐾))) = Σ𝑘 ∈ (1...𝑁)(⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘)))) |
| 59 | 8, 57, 1, 58 | syl3anc 1373 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘(𝑁 − 𝐾))) = Σ𝑘 ∈ (1...𝑁)(⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘)))) |
| 60 | | elfzuz3 13543 |
. . . . . . . 8
⊢ (𝐾 ∈ (0...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) |
| 61 | 60 | 3ad2ant2 1134 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ (ℤ≥‘𝐾)) |
| 62 | | pcfac 16924 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ0
∧ 𝑁 ∈
(ℤ≥‘𝐾) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝐾)) = Σ𝑘 ∈ (1...𝑁)(⌊‘(𝐾 / (𝑃↑𝑘)))) |
| 63 | 11, 61, 1, 62 | syl3anc 1373 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝐾)) = Σ𝑘 ∈ (1...𝑁)(⌊‘(𝐾 / (𝑃↑𝑘)))) |
| 64 | 59, 63 | oveq12d 7428 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → ((𝑃 pCnt (!‘(𝑁 − 𝐾))) + (𝑃 pCnt (!‘𝐾))) = (Σ𝑘 ∈ (1...𝑁)(⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘))) + Σ𝑘 ∈ (1...𝑁)(⌊‘(𝐾 / (𝑃↑𝑘))))) |
| 65 | 9 | nnzd 12620 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘(𝑁 − 𝐾)) ∈ ℤ) |
| 66 | 9 | nnne0d 12295 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘(𝑁 − 𝐾)) ≠ 0) |
| 67 | 12 | nnzd 12620 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝐾) ∈
ℤ) |
| 68 | 12 | nnne0d 12295 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝐾) ≠ 0) |
| 69 | | pcmul 16876 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧
((!‘(𝑁 − 𝐾)) ∈ ℤ ∧
(!‘(𝑁 − 𝐾)) ≠ 0) ∧ ((!‘𝐾) ∈ ℤ ∧
(!‘𝐾) ≠ 0)) →
(𝑃 pCnt ((!‘(𝑁 − 𝐾)) · (!‘𝐾))) = ((𝑃 pCnt (!‘(𝑁 − 𝐾))) + (𝑃 pCnt (!‘𝐾)))) |
| 70 | 1, 65, 66, 67, 68, 69 | syl122anc 1381 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((!‘(𝑁 − 𝐾)) · (!‘𝐾))) = ((𝑃 pCnt (!‘(𝑁 − 𝐾))) + (𝑃 pCnt (!‘𝐾)))) |
| 71 | 19, 38, 42 | fsumadd 15761 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...𝑁)((⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘))) + (⌊‘(𝐾 / (𝑃↑𝑘)))) = (Σ𝑘 ∈ (1...𝑁)(⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘))) + Σ𝑘 ∈ (1...𝑁)(⌊‘(𝐾 / (𝑃↑𝑘))))) |
| 72 | 64, 70, 71 | 3eqtr4d 2781 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((!‘(𝑁 − 𝐾)) · (!‘𝐾))) = Σ𝑘 ∈ (1...𝑁)((⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘))) + (⌊‘(𝐾 / (𝑃↑𝑘))))) |
| 73 | 49, 72 | oveq12d 7428 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → ((𝑃 pCnt (!‘𝑁)) − (𝑃 pCnt ((!‘(𝑁 − 𝐾)) · (!‘𝐾)))) = (Σ𝑘 ∈ (1...𝑁)(⌊‘(𝑁 / (𝑃↑𝑘))) − Σ𝑘 ∈ (1...𝑁)((⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘))) + (⌊‘(𝐾 / (𝑃↑𝑘)))))) |
| 74 | 44, 73 | eqtr4d 2774 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...𝑁)((⌊‘(𝑁 / (𝑃↑𝑘))) − ((⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘))) + (⌊‘(𝐾 / (𝑃↑𝑘))))) = ((𝑃 pCnt (!‘𝑁)) − (𝑃 pCnt ((!‘(𝑁 − 𝐾)) · (!‘𝐾))))) |
| 75 | 15, 18, 74 | 3eqtr4d 2781 |
1
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (𝑁C𝐾)) = Σ𝑘 ∈ (1...𝑁)((⌊‘(𝑁 / (𝑃↑𝑘))) − ((⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘))) + (⌊‘(𝐾 / (𝑃↑𝑘)))))) |