Proof of Theorem dnibndlem11
Step | Hyp | Ref
| Expression |
1 | | dnibndlem11.2 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ℝ) |
2 | 1 | dnicld1 34652 |
. . . . 5
⊢ (𝜑 →
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ) |
3 | | dnibndlem11.1 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℝ) |
4 | 3 | dnicld1 34652 |
. . . . 5
⊢ (𝜑 →
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ) |
5 | 2, 4 | resubcld 11403 |
. . . 4
⊢ (𝜑 →
((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈
ℝ) |
6 | | halfre 12187 |
. . . . 5
⊢ (1 / 2)
∈ ℝ |
7 | 6 | a1i 11 |
. . . 4
⊢ (𝜑 → (1 / 2) ∈
ℝ) |
8 | 2 | recnd 11003 |
. . . . . 6
⊢ (𝜑 →
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℂ) |
9 | 4 | recnd 11003 |
. . . . . 6
⊢ (𝜑 →
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℂ) |
10 | 8, 9 | negsubdi2d 11348 |
. . . . 5
⊢ (𝜑 →
-((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) =
((abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)))) |
11 | 4, 2 | resubcld 11403 |
. . . . . 6
⊢ (𝜑 →
((abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ∈
ℝ) |
12 | 1, 7 | readdcld 11004 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ) |
13 | | reflcl 13516 |
. . . . . . . . . . 11
⊢ ((𝐵 + (1 / 2)) ∈ ℝ
→ (⌊‘(𝐵 +
(1 / 2))) ∈ ℝ) |
14 | 12, 13 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈
ℝ) |
15 | 14 | recnd 11003 |
. . . . . . . . 9
⊢ (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈
ℂ) |
16 | 1 | recnd 11003 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ ℂ) |
17 | 15, 16 | subcld 11332 |
. . . . . . . 8
⊢ (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − 𝐵) ∈
ℂ) |
18 | 17 | absge0d 15156 |
. . . . . . 7
⊢ (𝜑 → 0 ≤
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) |
19 | 4, 2 | subge02d 11567 |
. . . . . . 7
⊢ (𝜑 → (0 ≤
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ↔ ((abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) −
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ≤ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) |
20 | 18, 19 | mpbid 231 |
. . . . . 6
⊢ (𝜑 →
((abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ≤
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) |
21 | | rddif 15052 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ →
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2)) |
22 | 3, 21 | syl 17 |
. . . . . 6
⊢ (𝜑 →
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2)) |
23 | 11, 4, 7, 20, 22 | letrd 11132 |
. . . . 5
⊢ (𝜑 →
((abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ≤ (1 /
2)) |
24 | 10, 23 | eqbrtrd 5096 |
. . . 4
⊢ (𝜑 →
-((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (1 /
2)) |
25 | 5, 7, 24 | lenegcon1d 11557 |
. . 3
⊢ (𝜑 → -(1 / 2) ≤
((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) |
26 | 3, 7 | readdcld 11004 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ) |
27 | | reflcl 13516 |
. . . . . . . . 9
⊢ ((𝐴 + (1 / 2)) ∈ ℝ
→ (⌊‘(𝐴 +
(1 / 2))) ∈ ℝ) |
28 | 26, 27 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈
ℝ) |
29 | 28 | recnd 11003 |
. . . . . . 7
⊢ (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈
ℂ) |
30 | 3 | recnd 11003 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℂ) |
31 | 29, 30 | subcld 11332 |
. . . . . 6
⊢ (𝜑 → ((⌊‘(𝐴 + (1 / 2))) − 𝐴) ∈
ℂ) |
32 | 31 | absge0d 15156 |
. . . . 5
⊢ (𝜑 → 0 ≤
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) |
33 | 2, 4 | subge02d 11567 |
. . . . 5
⊢ (𝜑 → (0 ≤
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ↔ ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) −
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)))) |
34 | 32, 33 | mpbid 231 |
. . . 4
⊢ (𝜑 →
((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) |
35 | | rddif 15052 |
. . . . 5
⊢ (𝐵 ∈ ℝ →
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ≤ (1 / 2)) |
36 | 1, 35 | syl 17 |
. . . 4
⊢ (𝜑 →
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ≤ (1 / 2)) |
37 | 5, 2, 7, 34, 36 | letrd 11132 |
. . 3
⊢ (𝜑 →
((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (1 /
2)) |
38 | 25, 37 | jca 512 |
. 2
⊢ (𝜑 → (-(1 / 2) ≤
((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∧
((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (1 /
2))) |
39 | 5, 7 | absled 15142 |
. 2
⊢ (𝜑 →
((abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (1 / 2) ↔ (-(1 /
2) ≤ ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∧
((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (1 /
2)))) |
40 | 38, 39 | mpbird 256 |
1
⊢ (𝜑 →
(abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (1 /
2)) |