Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem11 Structured version   Visualization version   GIF version

Theorem dnibndlem11 36471
Description: Lemma for dnibnd 36474. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
dnibndlem11.1 (𝜑𝐴 ∈ ℝ)
dnibndlem11.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
dnibndlem11 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (1 / 2))

Proof of Theorem dnibndlem11
StepHypRef Expression
1 dnibndlem11.2 . . . . . 6 (𝜑𝐵 ∈ ℝ)
21dnicld1 36455 . . . . 5 (𝜑 → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ)
3 dnibndlem11.1 . . . . . 6 (𝜑𝐴 ∈ ℝ)
43dnicld1 36455 . . . . 5 (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ)
52, 4resubcld 11689 . . . 4 (𝜑 → ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℝ)
6 halfre 12478 . . . . 5 (1 / 2) ∈ ℝ
76a1i 11 . . . 4 (𝜑 → (1 / 2) ∈ ℝ)
82recnd 11287 . . . . . 6 (𝜑 → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℂ)
94recnd 11287 . . . . . 6 (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℂ)
108, 9negsubdi2d 11634 . . . . 5 (𝜑 → -((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) = ((abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))))
114, 2resubcld 11689 . . . . . 6 (𝜑 → ((abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ∈ ℝ)
121, 7readdcld 11288 . . . . . . . . . . 11 (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ)
13 reflcl 13833 . . . . . . . . . . 11 ((𝐵 + (1 / 2)) ∈ ℝ → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
1412, 13syl 17 . . . . . . . . . 10 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
1514recnd 11287 . . . . . . . . 9 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℂ)
161recnd 11287 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
1715, 16subcld 11618 . . . . . . . 8 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − 𝐵) ∈ ℂ)
1817absge0d 15480 . . . . . . 7 (𝜑 → 0 ≤ (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)))
194, 2subge02d 11853 . . . . . . 7 (𝜑 → (0 ≤ (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ↔ ((abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ≤ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))
2018, 19mpbid 232 . . . . . 6 (𝜑 → ((abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ≤ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
21 rddif 15376 . . . . . . 7 (𝐴 ∈ ℝ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2))
223, 21syl 17 . . . . . 6 (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2))
2311, 4, 7, 20, 22letrd 11416 . . . . 5 (𝜑 → ((abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ≤ (1 / 2))
2410, 23eqbrtrd 5170 . . . 4 (𝜑 → -((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (1 / 2))
255, 7, 24lenegcon1d 11843 . . 3 (𝜑 → -(1 / 2) ≤ ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))
263, 7readdcld 11288 . . . . . . . . 9 (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ)
27 reflcl 13833 . . . . . . . . 9 ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
2826, 27syl 17 . . . . . . . 8 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
2928recnd 11287 . . . . . . 7 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℂ)
303recnd 11287 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
3129, 30subcld 11618 . . . . . 6 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) − 𝐴) ∈ ℂ)
3231absge0d 15480 . . . . 5 (𝜑 → 0 ≤ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
332, 4subge02d 11853 . . . . 5 (𝜑 → (0 ≤ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ↔ ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))))
3432, 33mpbid 232 . . . 4 (𝜑 → ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)))
35 rddif 15376 . . . . 5 (𝐵 ∈ ℝ → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ≤ (1 / 2))
361, 35syl 17 . . . 4 (𝜑 → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ≤ (1 / 2))
375, 2, 7, 34, 36letrd 11416 . . 3 (𝜑 → ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (1 / 2))
3825, 37jca 511 . 2 (𝜑 → (-(1 / 2) ≤ ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∧ ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (1 / 2)))
395, 7absled 15466 . 2 (𝜑 → ((abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (1 / 2) ↔ (-(1 / 2) ≤ ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∧ ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (1 / 2))))
4038, 39mpbird 257 1 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (1 / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2106   class class class wbr 5148  cfv 6563  (class class class)co 7431  cr 11152  0cc0 11153  1c1 11154   + caddc 11156  cle 11294  cmin 11490  -cneg 11491   / cdiv 11918  2c2 12319  cfl 13827  abscabs 15270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fl 13829  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272
This theorem is referenced by:  dnibndlem12  36472
  Copyright terms: Public domain W3C validator