Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem11 Structured version   Visualization version   GIF version

Theorem dnibndlem11 33353
Description: Lemma for dnibnd 33356. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
dnibndlem11.1 (𝜑𝐴 ∈ ℝ)
dnibndlem11.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
dnibndlem11 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (1 / 2))

Proof of Theorem dnibndlem11
StepHypRef Expression
1 dnibndlem11.2 . . . . . 6 (𝜑𝐵 ∈ ℝ)
21dnicld1 33337 . . . . 5 (𝜑 → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ)
3 dnibndlem11.1 . . . . . 6 (𝜑𝐴 ∈ ℝ)
43dnicld1 33337 . . . . 5 (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ)
52, 4resubcld 10869 . . . 4 (𝜑 → ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℝ)
6 halfre 11661 . . . . 5 (1 / 2) ∈ ℝ
76a1i 11 . . . 4 (𝜑 → (1 / 2) ∈ ℝ)
82recnd 10468 . . . . . 6 (𝜑 → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℂ)
94recnd 10468 . . . . . 6 (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℂ)
108, 9negsubdi2d 10814 . . . . 5 (𝜑 → -((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) = ((abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))))
114, 2resubcld 10869 . . . . . 6 (𝜑 → ((abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ∈ ℝ)
121, 7readdcld 10469 . . . . . . . . . . 11 (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ)
13 reflcl 12981 . . . . . . . . . . 11 ((𝐵 + (1 / 2)) ∈ ℝ → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
1412, 13syl 17 . . . . . . . . . 10 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
1514recnd 10468 . . . . . . . . 9 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℂ)
161recnd 10468 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
1715, 16subcld 10798 . . . . . . . 8 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − 𝐵) ∈ ℂ)
1817absge0d 14665 . . . . . . 7 (𝜑 → 0 ≤ (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)))
194, 2subge02d 11033 . . . . . . 7 (𝜑 → (0 ≤ (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ↔ ((abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ≤ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))
2018, 19mpbid 224 . . . . . 6 (𝜑 → ((abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ≤ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
21 rddif 14561 . . . . . . 7 (𝐴 ∈ ℝ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2))
223, 21syl 17 . . . . . 6 (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2))
2311, 4, 7, 20, 22letrd 10597 . . . . 5 (𝜑 → ((abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ≤ (1 / 2))
2410, 23eqbrtrd 4951 . . . 4 (𝜑 → -((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (1 / 2))
255, 7, 24lenegcon1d 11023 . . 3 (𝜑 → -(1 / 2) ≤ ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))
263, 7readdcld 10469 . . . . . . . . 9 (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ)
27 reflcl 12981 . . . . . . . . 9 ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
2826, 27syl 17 . . . . . . . 8 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
2928recnd 10468 . . . . . . 7 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℂ)
303recnd 10468 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
3129, 30subcld 10798 . . . . . 6 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) − 𝐴) ∈ ℂ)
3231absge0d 14665 . . . . 5 (𝜑 → 0 ≤ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
332, 4subge02d 11033 . . . . 5 (𝜑 → (0 ≤ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ↔ ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))))
3432, 33mpbid 224 . . . 4 (𝜑 → ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)))
35 rddif 14561 . . . . 5 (𝐵 ∈ ℝ → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ≤ (1 / 2))
361, 35syl 17 . . . 4 (𝜑 → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ≤ (1 / 2))
375, 2, 7, 34, 36letrd 10597 . . 3 (𝜑 → ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (1 / 2))
3825, 37jca 504 . 2 (𝜑 → (-(1 / 2) ≤ ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∧ ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (1 / 2)))
395, 7absled 14651 . 2 (𝜑 → ((abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (1 / 2) ↔ (-(1 / 2) ≤ ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∧ ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (1 / 2))))
4038, 39mpbird 249 1 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (1 / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  wcel 2050   class class class wbr 4929  cfv 6188  (class class class)co 6976  cr 10334  0cc0 10335  1c1 10336   + caddc 10338  cle 10475  cmin 10670  -cneg 10671   / cdiv 11098  2c2 11495  cfl 12975  abscabs 14454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-pre-sup 10413
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-er 8089  df-en 8307  df-dom 8308  df-sdom 8309  df-sup 8701  df-inf 8702  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-2 11503  df-3 11504  df-n0 11708  df-z 11794  df-uz 12059  df-rp 12205  df-fl 12977  df-seq 13185  df-exp 13245  df-cj 14319  df-re 14320  df-im 14321  df-sqrt 14455  df-abs 14456
This theorem is referenced by:  dnibndlem12  33354
  Copyright terms: Public domain W3C validator