Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem11 Structured version   Visualization version   GIF version

Theorem dnibndlem11 35667
Description: Lemma for dnibnd 35670. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
dnibndlem11.1 (𝜑𝐴 ∈ ℝ)
dnibndlem11.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
dnibndlem11 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (1 / 2))

Proof of Theorem dnibndlem11
StepHypRef Expression
1 dnibndlem11.2 . . . . . 6 (𝜑𝐵 ∈ ℝ)
21dnicld1 35651 . . . . 5 (𝜑 → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ)
3 dnibndlem11.1 . . . . . 6 (𝜑𝐴 ∈ ℝ)
43dnicld1 35651 . . . . 5 (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ)
52, 4resubcld 11646 . . . 4 (𝜑 → ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℝ)
6 halfre 12430 . . . . 5 (1 / 2) ∈ ℝ
76a1i 11 . . . 4 (𝜑 → (1 / 2) ∈ ℝ)
82recnd 11246 . . . . . 6 (𝜑 → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℂ)
94recnd 11246 . . . . . 6 (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℂ)
108, 9negsubdi2d 11591 . . . . 5 (𝜑 → -((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) = ((abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))))
114, 2resubcld 11646 . . . . . 6 (𝜑 → ((abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ∈ ℝ)
121, 7readdcld 11247 . . . . . . . . . . 11 (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ)
13 reflcl 13765 . . . . . . . . . . 11 ((𝐵 + (1 / 2)) ∈ ℝ → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
1412, 13syl 17 . . . . . . . . . 10 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
1514recnd 11246 . . . . . . . . 9 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℂ)
161recnd 11246 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
1715, 16subcld 11575 . . . . . . . 8 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − 𝐵) ∈ ℂ)
1817absge0d 15395 . . . . . . 7 (𝜑 → 0 ≤ (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)))
194, 2subge02d 11810 . . . . . . 7 (𝜑 → (0 ≤ (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ↔ ((abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ≤ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))
2018, 19mpbid 231 . . . . . 6 (𝜑 → ((abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ≤ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
21 rddif 15291 . . . . . . 7 (𝐴 ∈ ℝ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2))
223, 21syl 17 . . . . . 6 (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2))
2311, 4, 7, 20, 22letrd 11375 . . . . 5 (𝜑 → ((abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ≤ (1 / 2))
2410, 23eqbrtrd 5169 . . . 4 (𝜑 → -((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (1 / 2))
255, 7, 24lenegcon1d 11800 . . 3 (𝜑 → -(1 / 2) ≤ ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))
263, 7readdcld 11247 . . . . . . . . 9 (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ)
27 reflcl 13765 . . . . . . . . 9 ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
2826, 27syl 17 . . . . . . . 8 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
2928recnd 11246 . . . . . . 7 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℂ)
303recnd 11246 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
3129, 30subcld 11575 . . . . . 6 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) − 𝐴) ∈ ℂ)
3231absge0d 15395 . . . . 5 (𝜑 → 0 ≤ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
332, 4subge02d 11810 . . . . 5 (𝜑 → (0 ≤ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ↔ ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))))
3432, 33mpbid 231 . . . 4 (𝜑 → ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)))
35 rddif 15291 . . . . 5 (𝐵 ∈ ℝ → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ≤ (1 / 2))
361, 35syl 17 . . . 4 (𝜑 → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ≤ (1 / 2))
375, 2, 7, 34, 36letrd 11375 . . 3 (𝜑 → ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (1 / 2))
3825, 37jca 510 . 2 (𝜑 → (-(1 / 2) ≤ ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∧ ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (1 / 2)))
395, 7absled 15381 . 2 (𝜑 → ((abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (1 / 2) ↔ (-(1 / 2) ≤ ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∧ ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (1 / 2))))
4038, 39mpbird 256 1 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (1 / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wcel 2104   class class class wbr 5147  cfv 6542  (class class class)co 7411  cr 11111  0cc0 11112  1c1 11113   + caddc 11115  cle 11253  cmin 11448  -cneg 11449   / cdiv 11875  2c2 12271  cfl 13759  abscabs 15185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-sup 9439  df-inf 9440  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-z 12563  df-uz 12827  df-rp 12979  df-fl 13761  df-seq 13971  df-exp 14032  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187
This theorem is referenced by:  dnibndlem12  35668
  Copyright terms: Public domain W3C validator