Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem11 Structured version   Visualization version   GIF version

Theorem dnibndlem11 36191
Description: Lemma for dnibnd 36194. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
dnibndlem11.1 (𝜑𝐴 ∈ ℝ)
dnibndlem11.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
dnibndlem11 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (1 / 2))

Proof of Theorem dnibndlem11
StepHypRef Expression
1 dnibndlem11.2 . . . . . 6 (𝜑𝐵 ∈ ℝ)
21dnicld1 36175 . . . . 5 (𝜑 → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ)
3 dnibndlem11.1 . . . . . 6 (𝜑𝐴 ∈ ℝ)
43dnicld1 36175 . . . . 5 (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ)
52, 4resubcld 11692 . . . 4 (𝜑 → ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℝ)
6 halfre 12478 . . . . 5 (1 / 2) ∈ ℝ
76a1i 11 . . . 4 (𝜑 → (1 / 2) ∈ ℝ)
82recnd 11292 . . . . . 6 (𝜑 → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℂ)
94recnd 11292 . . . . . 6 (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℂ)
108, 9negsubdi2d 11637 . . . . 5 (𝜑 → -((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) = ((abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))))
114, 2resubcld 11692 . . . . . 6 (𝜑 → ((abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ∈ ℝ)
121, 7readdcld 11293 . . . . . . . . . . 11 (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ)
13 reflcl 13816 . . . . . . . . . . 11 ((𝐵 + (1 / 2)) ∈ ℝ → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
1412, 13syl 17 . . . . . . . . . 10 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
1514recnd 11292 . . . . . . . . 9 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℂ)
161recnd 11292 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
1715, 16subcld 11621 . . . . . . . 8 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − 𝐵) ∈ ℂ)
1817absge0d 15449 . . . . . . 7 (𝜑 → 0 ≤ (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)))
194, 2subge02d 11856 . . . . . . 7 (𝜑 → (0 ≤ (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ↔ ((abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ≤ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))
2018, 19mpbid 231 . . . . . 6 (𝜑 → ((abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ≤ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
21 rddif 15345 . . . . . . 7 (𝐴 ∈ ℝ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2))
223, 21syl 17 . . . . . 6 (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2))
2311, 4, 7, 20, 22letrd 11421 . . . . 5 (𝜑 → ((abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ≤ (1 / 2))
2410, 23eqbrtrd 5175 . . . 4 (𝜑 → -((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (1 / 2))
255, 7, 24lenegcon1d 11846 . . 3 (𝜑 → -(1 / 2) ≤ ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))
263, 7readdcld 11293 . . . . . . . . 9 (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ)
27 reflcl 13816 . . . . . . . . 9 ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
2826, 27syl 17 . . . . . . . 8 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
2928recnd 11292 . . . . . . 7 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℂ)
303recnd 11292 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
3129, 30subcld 11621 . . . . . 6 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) − 𝐴) ∈ ℂ)
3231absge0d 15449 . . . . 5 (𝜑 → 0 ≤ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
332, 4subge02d 11856 . . . . 5 (𝜑 → (0 ≤ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ↔ ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))))
3432, 33mpbid 231 . . . 4 (𝜑 → ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)))
35 rddif 15345 . . . . 5 (𝐵 ∈ ℝ → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ≤ (1 / 2))
361, 35syl 17 . . . 4 (𝜑 → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ≤ (1 / 2))
375, 2, 7, 34, 36letrd 11421 . . 3 (𝜑 → ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (1 / 2))
3825, 37jca 510 . 2 (𝜑 → (-(1 / 2) ≤ ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∧ ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (1 / 2)))
395, 7absled 15435 . 2 (𝜑 → ((abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (1 / 2) ↔ (-(1 / 2) ≤ ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∧ ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (1 / 2))))
4038, 39mpbird 256 1 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (1 / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wcel 2099   class class class wbr 5153  cfv 6554  (class class class)co 7424  cr 11157  0cc0 11158  1c1 11159   + caddc 11161  cle 11299  cmin 11494  -cneg 11495   / cdiv 11921  2c2 12319  cfl 13810  abscabs 15239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-sup 9485  df-inf 9486  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12611  df-uz 12875  df-rp 13029  df-fl 13812  df-seq 14022  df-exp 14082  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241
This theorem is referenced by:  dnibndlem12  36192
  Copyright terms: Public domain W3C validator