| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evls1varpwval | Structured version Visualization version GIF version | ||
| Description: Univariate polynomial evaluation for subrings maps the exponentiation of a variable to the exponentiation of the evaluated variable. See evl1varpwval 22280. (Contributed by Thierry Arnoux, 24-Jan-2025.) |
| Ref | Expression |
|---|---|
| evls1varpwval.q | ⊢ 𝑄 = (𝑆 evalSub1 𝑅) |
| evls1varpwval.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| evls1varpwval.w | ⊢ 𝑊 = (Poly1‘𝑈) |
| evls1varpwval.x | ⊢ 𝑋 = (var1‘𝑈) |
| evls1varpwval.b | ⊢ 𝐵 = (Base‘𝑆) |
| evls1varpwval.e | ⊢ ∧ = (.g‘(mulGrp‘𝑊)) |
| evls1varpwval.f | ⊢ ↑ = (.g‘(mulGrp‘𝑆)) |
| evls1varpwval.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| evls1varpwval.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| evls1varpwval.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| evls1varpwval.c | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| evls1varpwval | ⊢ (𝜑 → ((𝑄‘(𝑁 ∧ 𝑋))‘𝐶) = (𝑁 ↑ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1varpwval.q | . . 3 ⊢ 𝑄 = (𝑆 evalSub1 𝑅) | |
| 2 | evls1varpwval.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
| 3 | evls1varpwval.w | . . 3 ⊢ 𝑊 = (Poly1‘𝑈) | |
| 4 | evls1varpwval.u | . . 3 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
| 5 | eqid 2733 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 6 | evls1varpwval.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 7 | evls1varpwval.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
| 8 | evls1varpwval.e | . . 3 ⊢ ∧ = (.g‘(mulGrp‘𝑊)) | |
| 9 | evls1varpwval.f | . . 3 ⊢ ↑ = (.g‘(mulGrp‘𝑆)) | |
| 10 | evls1varpwval.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 11 | 4 | subrgring 20493 | . . . 4 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring) |
| 12 | evls1varpwval.x | . . . . 5 ⊢ 𝑋 = (var1‘𝑈) | |
| 13 | 12, 3, 5 | vr1cl 22133 | . . . 4 ⊢ (𝑈 ∈ Ring → 𝑋 ∈ (Base‘𝑊)) |
| 14 | 7, 11, 13 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑊)) |
| 15 | evls1varpwval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
| 16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 15 | evls1expd 22285 | . 2 ⊢ (𝜑 → ((𝑄‘(𝑁 ∧ 𝑋))‘𝐶) = (𝑁 ↑ ((𝑄‘𝑋)‘𝐶))) |
| 17 | 1, 12, 4, 2, 6, 7 | evls1var 22256 | . . . . 5 ⊢ (𝜑 → (𝑄‘𝑋) = ( I ↾ 𝐵)) |
| 18 | 17 | fveq1d 6832 | . . . 4 ⊢ (𝜑 → ((𝑄‘𝑋)‘𝐶) = (( I ↾ 𝐵)‘𝐶)) |
| 19 | fvresi 7115 | . . . . 5 ⊢ (𝐶 ∈ 𝐵 → (( I ↾ 𝐵)‘𝐶) = 𝐶) | |
| 20 | 15, 19 | syl 17 | . . . 4 ⊢ (𝜑 → (( I ↾ 𝐵)‘𝐶) = 𝐶) |
| 21 | 18, 20 | eqtrd 2768 | . . 3 ⊢ (𝜑 → ((𝑄‘𝑋)‘𝐶) = 𝐶) |
| 22 | 21 | oveq2d 7370 | . 2 ⊢ (𝜑 → (𝑁 ↑ ((𝑄‘𝑋)‘𝐶)) = (𝑁 ↑ 𝐶)) |
| 23 | 16, 22 | eqtrd 2768 | 1 ⊢ (𝜑 → ((𝑄‘(𝑁 ∧ 𝑋))‘𝐶) = (𝑁 ↑ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 I cid 5515 ↾ cres 5623 ‘cfv 6488 (class class class)co 7354 ℕ0cn0 12390 Basecbs 17124 ↾s cress 17145 .gcmg 18984 mulGrpcmgp 20062 Ringcrg 20155 CRingccrg 20156 SubRingcsubrg 20488 var1cv1 22091 Poly1cpl1 22092 evalSub1 ces1 22231 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-of 7618 df-ofr 7619 df-om 7805 df-1st 7929 df-2nd 7930 df-supp 8099 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-er 8630 df-map 8760 df-pm 8761 df-ixp 8830 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-fsupp 9255 df-sup 9335 df-oi 9405 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-z 12478 df-dec 12597 df-uz 12741 df-fz 13412 df-fzo 13559 df-seq 13913 df-hash 14242 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-mulr 17179 df-sca 17181 df-vsca 17182 df-ip 17183 df-tset 17184 df-ple 17185 df-ds 17187 df-hom 17189 df-cco 17190 df-0g 17349 df-gsum 17350 df-prds 17355 df-pws 17357 df-mre 17492 df-mrc 17493 df-acs 17495 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-mhm 18695 df-submnd 18696 df-grp 18853 df-minusg 18854 df-sbg 18855 df-mulg 18985 df-subg 19040 df-ghm 19129 df-cntz 19233 df-cmn 19698 df-abl 19699 df-mgp 20063 df-rng 20075 df-ur 20104 df-srg 20109 df-ring 20157 df-cring 20158 df-rhm 20394 df-subrng 20465 df-subrg 20489 df-lmod 20799 df-lss 20869 df-lsp 20909 df-assa 21794 df-asp 21795 df-ascl 21796 df-psr 21850 df-mvr 21851 df-mpl 21852 df-opsr 21854 df-evls 22012 df-evl 22013 df-psr1 22095 df-vr1 22096 df-ply1 22097 df-evls1 22233 df-evl1 22234 |
| This theorem is referenced by: evls1fpws 22287 evls1monply1 33551 |
| Copyright terms: Public domain | W3C validator |