| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evls1varpwval | Structured version Visualization version GIF version | ||
| Description: Univariate polynomial evaluation for subrings maps the exponentiation of a variable to the exponentiation of the evaluated variable. See evl1varpwval 22265. (Contributed by Thierry Arnoux, 24-Jan-2025.) |
| Ref | Expression |
|---|---|
| evls1varpwval.q | ⊢ 𝑄 = (𝑆 evalSub1 𝑅) |
| evls1varpwval.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| evls1varpwval.w | ⊢ 𝑊 = (Poly1‘𝑈) |
| evls1varpwval.x | ⊢ 𝑋 = (var1‘𝑈) |
| evls1varpwval.b | ⊢ 𝐵 = (Base‘𝑆) |
| evls1varpwval.e | ⊢ ∧ = (.g‘(mulGrp‘𝑊)) |
| evls1varpwval.f | ⊢ ↑ = (.g‘(mulGrp‘𝑆)) |
| evls1varpwval.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| evls1varpwval.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| evls1varpwval.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| evls1varpwval.c | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| evls1varpwval | ⊢ (𝜑 → ((𝑄‘(𝑁 ∧ 𝑋))‘𝐶) = (𝑁 ↑ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1varpwval.q | . . 3 ⊢ 𝑄 = (𝑆 evalSub1 𝑅) | |
| 2 | evls1varpwval.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
| 3 | evls1varpwval.w | . . 3 ⊢ 𝑊 = (Poly1‘𝑈) | |
| 4 | evls1varpwval.u | . . 3 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
| 5 | eqid 2729 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 6 | evls1varpwval.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 7 | evls1varpwval.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
| 8 | evls1varpwval.e | . . 3 ⊢ ∧ = (.g‘(mulGrp‘𝑊)) | |
| 9 | evls1varpwval.f | . . 3 ⊢ ↑ = (.g‘(mulGrp‘𝑆)) | |
| 10 | evls1varpwval.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 11 | 4 | subrgring 20477 | . . . 4 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring) |
| 12 | evls1varpwval.x | . . . . 5 ⊢ 𝑋 = (var1‘𝑈) | |
| 13 | 12, 3, 5 | vr1cl 22118 | . . . 4 ⊢ (𝑈 ∈ Ring → 𝑋 ∈ (Base‘𝑊)) |
| 14 | 7, 11, 13 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑊)) |
| 15 | evls1varpwval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
| 16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 15 | evls1expd 22270 | . 2 ⊢ (𝜑 → ((𝑄‘(𝑁 ∧ 𝑋))‘𝐶) = (𝑁 ↑ ((𝑄‘𝑋)‘𝐶))) |
| 17 | 1, 12, 4, 2, 6, 7 | evls1var 22241 | . . . . 5 ⊢ (𝜑 → (𝑄‘𝑋) = ( I ↾ 𝐵)) |
| 18 | 17 | fveq1d 6828 | . . . 4 ⊢ (𝜑 → ((𝑄‘𝑋)‘𝐶) = (( I ↾ 𝐵)‘𝐶)) |
| 19 | fvresi 7113 | . . . . 5 ⊢ (𝐶 ∈ 𝐵 → (( I ↾ 𝐵)‘𝐶) = 𝐶) | |
| 20 | 15, 19 | syl 17 | . . . 4 ⊢ (𝜑 → (( I ↾ 𝐵)‘𝐶) = 𝐶) |
| 21 | 18, 20 | eqtrd 2764 | . . 3 ⊢ (𝜑 → ((𝑄‘𝑋)‘𝐶) = 𝐶) |
| 22 | 21 | oveq2d 7369 | . 2 ⊢ (𝜑 → (𝑁 ↑ ((𝑄‘𝑋)‘𝐶)) = (𝑁 ↑ 𝐶)) |
| 23 | 16, 22 | eqtrd 2764 | 1 ⊢ (𝜑 → ((𝑄‘(𝑁 ∧ 𝑋))‘𝐶) = (𝑁 ↑ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 I cid 5517 ↾ cres 5625 ‘cfv 6486 (class class class)co 7353 ℕ0cn0 12402 Basecbs 17138 ↾s cress 17159 .gcmg 18964 mulGrpcmgp 20043 Ringcrg 20136 CRingccrg 20137 SubRingcsubrg 20472 var1cv1 22076 Poly1cpl1 22077 evalSub1 ces1 22216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-ofr 7618 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-fzo 13576 df-seq 13927 df-hash 14256 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-hom 17203 df-cco 17204 df-0g 17363 df-gsum 17364 df-prds 17369 df-pws 17371 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-mulg 18965 df-subg 19020 df-ghm 19110 df-cntz 19214 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-srg 20090 df-ring 20138 df-cring 20139 df-rhm 20375 df-subrng 20449 df-subrg 20473 df-lmod 20783 df-lss 20853 df-lsp 20893 df-assa 21778 df-asp 21779 df-ascl 21780 df-psr 21834 df-mvr 21835 df-mpl 21836 df-opsr 21838 df-evls 21997 df-evl 21998 df-psr1 22080 df-vr1 22081 df-ply1 22082 df-evls1 22218 df-evl1 22219 |
| This theorem is referenced by: evls1fpws 22272 |
| Copyright terms: Public domain | W3C validator |