| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpfconst | Structured version Visualization version GIF version | ||
| Description: Constants are multivariate polynomial functions. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| Ref | Expression |
|---|---|
| mpfconst.b | ⊢ 𝐵 = (Base‘𝑆) |
| mpfconst.q | ⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) |
| mpfconst.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| mpfconst.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| mpfconst.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| mpfconst.x | ⊢ (𝜑 → 𝑋 ∈ 𝑅) |
| Ref | Expression |
|---|---|
| mpfconst | ⊢ (𝜑 → ((𝐵 ↑m 𝐼) × {𝑋}) ∈ 𝑄) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . 4 ⊢ ((𝐼 evalSub 𝑆)‘𝑅) = ((𝐼 evalSub 𝑆)‘𝑅) | |
| 2 | eqid 2736 | . . . 4 ⊢ (𝐼 mPoly (𝑆 ↾s 𝑅)) = (𝐼 mPoly (𝑆 ↾s 𝑅)) | |
| 3 | eqid 2736 | . . . 4 ⊢ (𝑆 ↾s 𝑅) = (𝑆 ↾s 𝑅) | |
| 4 | mpfconst.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
| 5 | eqid 2736 | . . . 4 ⊢ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅))) = (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅))) | |
| 6 | mpfconst.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 7 | mpfconst.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 8 | mpfconst.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
| 9 | mpfconst.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑅) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | evlssca 22114 | . . 3 ⊢ (𝜑 → (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑋)) = ((𝐵 ↑m 𝐼) × {𝑋})) |
| 11 | eqid 2736 | . . . . . . 7 ⊢ (𝑆 ↑s (𝐵 ↑m 𝐼)) = (𝑆 ↑s (𝐵 ↑m 𝐼)) | |
| 12 | 1, 2, 3, 11, 4 | evlsrhm 22113 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) RingHom (𝑆 ↑s (𝐵 ↑m 𝐼)))) |
| 13 | 6, 7, 8, 12 | syl3anc 1372 | . . . . 5 ⊢ (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) RingHom (𝑆 ↑s (𝐵 ↑m 𝐼)))) |
| 14 | eqid 2736 | . . . . . 6 ⊢ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) = (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) | |
| 15 | eqid 2736 | . . . . . 6 ⊢ (Base‘(𝑆 ↑s (𝐵 ↑m 𝐼))) = (Base‘(𝑆 ↑s (𝐵 ↑m 𝐼))) | |
| 16 | 14, 15 | rhmf 20486 | . . . . 5 ⊢ (((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) RingHom (𝑆 ↑s (𝐵 ↑m 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))⟶(Base‘(𝑆 ↑s (𝐵 ↑m 𝐼)))) |
| 17 | ffn 6735 | . . . . 5 ⊢ (((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))⟶(Base‘(𝑆 ↑s (𝐵 ↑m 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) | |
| 18 | 13, 16, 17 | 3syl 18 | . . . 4 ⊢ (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 19 | 3 | subrgring 20575 | . . . . . . 7 ⊢ (𝑅 ∈ (SubRing‘𝑆) → (𝑆 ↾s 𝑅) ∈ Ring) |
| 20 | 8, 19 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑆 ↾s 𝑅) ∈ Ring) |
| 21 | eqid 2736 | . . . . . . 7 ⊢ (Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))) = (Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))) | |
| 22 | 2 | mplring 22040 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝑉 ∧ (𝑆 ↾s 𝑅) ∈ Ring) → (𝐼 mPoly (𝑆 ↾s 𝑅)) ∈ Ring) |
| 23 | 2 | mpllmod 22039 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝑉 ∧ (𝑆 ↾s 𝑅) ∈ Ring) → (𝐼 mPoly (𝑆 ↾s 𝑅)) ∈ LMod) |
| 24 | eqid 2736 | . . . . . . 7 ⊢ (Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) = (Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) | |
| 25 | 5, 21, 22, 23, 24, 14 | asclf 21903 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ (𝑆 ↾s 𝑅) ∈ Ring) → (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅))):(Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))))⟶(Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 26 | 6, 20, 25 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅))):(Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))))⟶(Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 27 | 4 | subrgss 20573 | . . . . . . . 8 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐵) |
| 28 | 3, 4 | ressbas2 17284 | . . . . . . . 8 ⊢ (𝑅 ⊆ 𝐵 → 𝑅 = (Base‘(𝑆 ↾s 𝑅))) |
| 29 | 8, 27, 28 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → 𝑅 = (Base‘(𝑆 ↾s 𝑅))) |
| 30 | ovexd 7467 | . . . . . . . . 9 ⊢ (𝜑 → (𝑆 ↾s 𝑅) ∈ V) | |
| 31 | 2, 6, 30 | mplsca 22034 | . . . . . . . 8 ⊢ (𝜑 → (𝑆 ↾s 𝑅) = (Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 32 | 31 | fveq2d 6909 | . . . . . . 7 ⊢ (𝜑 → (Base‘(𝑆 ↾s 𝑅)) = (Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))))) |
| 33 | 29, 32 | eqtrd 2776 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))))) |
| 34 | 9, 33 | eleqtrd 2842 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))))) |
| 35 | 26, 34 | ffvelcdmd 7104 | . . . 4 ⊢ (𝜑 → ((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑋) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 36 | fnfvelrn 7099 | . . . 4 ⊢ ((((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ ((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑋) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑋)) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅)) | |
| 37 | 18, 35, 36 | syl2anc 584 | . . 3 ⊢ (𝜑 → (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑋)) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅)) |
| 38 | 10, 37 | eqeltrrd 2841 | . 2 ⊢ (𝜑 → ((𝐵 ↑m 𝐼) × {𝑋}) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅)) |
| 39 | mpfconst.q | . 2 ⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) | |
| 40 | 38, 39 | eleqtrrdi 2851 | 1 ⊢ (𝜑 → ((𝐵 ↑m 𝐼) × {𝑋}) ∈ 𝑄) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3479 ⊆ wss 3950 {csn 4625 × cxp 5682 ran crn 5685 Fn wfn 6555 ⟶wf 6556 ‘cfv 6560 (class class class)co 7432 ↑m cmap 8867 Basecbs 17248 ↾s cress 17275 Scalarcsca 17301 ↑s cpws 17492 Ringcrg 20231 CRingccrg 20232 RingHom crh 20470 SubRingcsubrg 20570 algSccascl 21873 mPoly cmpl 21927 evalSub ces 22097 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-of 7698 df-ofr 7699 df-om 7889 df-1st 8015 df-2nd 8016 df-supp 8187 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-er 8746 df-map 8869 df-pm 8870 df-ixp 8939 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-fsupp 9403 df-sup 9483 df-oi 9551 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-fz 13549 df-fzo 13696 df-seq 14044 df-hash 14371 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-hom 17322 df-cco 17323 df-0g 17487 df-gsum 17488 df-prds 17493 df-pws 17495 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-mhm 18797 df-submnd 18798 df-grp 18955 df-minusg 18956 df-sbg 18957 df-mulg 19087 df-subg 19142 df-ghm 19232 df-cntz 19336 df-cmn 19801 df-abl 19802 df-mgp 20139 df-rng 20151 df-ur 20180 df-srg 20185 df-ring 20233 df-cring 20234 df-rhm 20473 df-subrng 20547 df-subrg 20571 df-lmod 20861 df-lss 20931 df-lsp 20971 df-assa 21874 df-asp 21875 df-ascl 21876 df-psr 21930 df-mvr 21931 df-mpl 21932 df-evls 22099 |
| This theorem is referenced by: mzpmfp 42763 |
| Copyright terms: Public domain | W3C validator |