MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpfconst Structured version   Visualization version   GIF version

Theorem mpfconst 21221
Description: Constants are multivariate polynomial functions. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypotheses
Ref Expression
mpfconst.b 𝐵 = (Base‘𝑆)
mpfconst.q 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅)
mpfconst.i (𝜑𝐼𝑉)
mpfconst.s (𝜑𝑆 ∈ CRing)
mpfconst.r (𝜑𝑅 ∈ (SubRing‘𝑆))
mpfconst.x (𝜑𝑋𝑅)
Assertion
Ref Expression
mpfconst (𝜑 → ((𝐵m 𝐼) × {𝑋}) ∈ 𝑄)

Proof of Theorem mpfconst
StepHypRef Expression
1 eqid 2738 . . . 4 ((𝐼 evalSub 𝑆)‘𝑅) = ((𝐼 evalSub 𝑆)‘𝑅)
2 eqid 2738 . . . 4 (𝐼 mPoly (𝑆s 𝑅)) = (𝐼 mPoly (𝑆s 𝑅))
3 eqid 2738 . . . 4 (𝑆s 𝑅) = (𝑆s 𝑅)
4 mpfconst.b . . . 4 𝐵 = (Base‘𝑆)
5 eqid 2738 . . . 4 (algSc‘(𝐼 mPoly (𝑆s 𝑅))) = (algSc‘(𝐼 mPoly (𝑆s 𝑅)))
6 mpfconst.i . . . 4 (𝜑𝐼𝑉)
7 mpfconst.s . . . 4 (𝜑𝑆 ∈ CRing)
8 mpfconst.r . . . 4 (𝜑𝑅 ∈ (SubRing‘𝑆))
9 mpfconst.x . . . 4 (𝜑𝑋𝑅)
101, 2, 3, 4, 5, 6, 7, 8, 9evlssca 21209 . . 3 (𝜑 → (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑋)) = ((𝐵m 𝐼) × {𝑋}))
11 eqid 2738 . . . . . . 7 (𝑆s (𝐵m 𝐼)) = (𝑆s (𝐵m 𝐼))
121, 2, 3, 11, 4evlsrhm 21208 . . . . . 6 ((𝐼𝑉𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s (𝐵m 𝐼))))
136, 7, 8, 12syl3anc 1369 . . . . 5 (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s (𝐵m 𝐼))))
14 eqid 2738 . . . . . 6 (Base‘(𝐼 mPoly (𝑆s 𝑅))) = (Base‘(𝐼 mPoly (𝑆s 𝑅)))
15 eqid 2738 . . . . . 6 (Base‘(𝑆s (𝐵m 𝐼))) = (Base‘(𝑆s (𝐵m 𝐼)))
1614, 15rhmf 19885 . . . . 5 (((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s (𝐵m 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆s 𝑅)))⟶(Base‘(𝑆s (𝐵m 𝐼))))
17 ffn 6584 . . . . 5 (((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆s 𝑅)))⟶(Base‘(𝑆s (𝐵m 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))))
1813, 16, 173syl 18 . . . 4 (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))))
193subrgring 19942 . . . . . . 7 (𝑅 ∈ (SubRing‘𝑆) → (𝑆s 𝑅) ∈ Ring)
208, 19syl 17 . . . . . 6 (𝜑 → (𝑆s 𝑅) ∈ Ring)
21 eqid 2738 . . . . . . 7 (Scalar‘(𝐼 mPoly (𝑆s 𝑅))) = (Scalar‘(𝐼 mPoly (𝑆s 𝑅)))
222mplring 21134 . . . . . . 7 ((𝐼𝑉 ∧ (𝑆s 𝑅) ∈ Ring) → (𝐼 mPoly (𝑆s 𝑅)) ∈ Ring)
232mpllmod 21133 . . . . . . 7 ((𝐼𝑉 ∧ (𝑆s 𝑅) ∈ Ring) → (𝐼 mPoly (𝑆s 𝑅)) ∈ LMod)
24 eqid 2738 . . . . . . 7 (Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅)))) = (Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅))))
255, 21, 22, 23, 24, 14asclf 20996 . . . . . 6 ((𝐼𝑉 ∧ (𝑆s 𝑅) ∈ Ring) → (algSc‘(𝐼 mPoly (𝑆s 𝑅))):(Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅))))⟶(Base‘(𝐼 mPoly (𝑆s 𝑅))))
266, 20, 25syl2anc 583 . . . . 5 (𝜑 → (algSc‘(𝐼 mPoly (𝑆s 𝑅))):(Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅))))⟶(Base‘(𝐼 mPoly (𝑆s 𝑅))))
274subrgss 19940 . . . . . . . 8 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐵)
283, 4ressbas2 16875 . . . . . . . 8 (𝑅𝐵𝑅 = (Base‘(𝑆s 𝑅)))
298, 27, 283syl 18 . . . . . . 7 (𝜑𝑅 = (Base‘(𝑆s 𝑅)))
30 ovexd 7290 . . . . . . . . 9 (𝜑 → (𝑆s 𝑅) ∈ V)
312, 6, 30mplsca 21127 . . . . . . . 8 (𝜑 → (𝑆s 𝑅) = (Scalar‘(𝐼 mPoly (𝑆s 𝑅))))
3231fveq2d 6760 . . . . . . 7 (𝜑 → (Base‘(𝑆s 𝑅)) = (Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅)))))
3329, 32eqtrd 2778 . . . . . 6 (𝜑𝑅 = (Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅)))))
349, 33eleqtrd 2841 . . . . 5 (𝜑𝑋 ∈ (Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅)))))
3526, 34ffvelrnd 6944 . . . 4 (𝜑 → ((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑋) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
36 fnfvelrn 6940 . . . 4 ((((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ ((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑋) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑋)) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅))
3718, 35, 36syl2anc 583 . . 3 (𝜑 → (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑋)) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅))
3810, 37eqeltrrd 2840 . 2 (𝜑 → ((𝐵m 𝐼) × {𝑋}) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅))
39 mpfconst.q . 2 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅)
4038, 39eleqtrrdi 2850 1 (𝜑 → ((𝐵m 𝐼) × {𝑋}) ∈ 𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883  {csn 4558   × cxp 5578  ran crn 5581   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  Basecbs 16840  s cress 16867  Scalarcsca 16891  s cpws 17074  Ringcrg 19698  CRingccrg 19699   RingHom crh 19871  SubRingcsubrg 19935  algSccascl 20969   mPoly cmpl 21019   evalSub ces 21190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-0g 17069  df-gsum 17070  df-prds 17075  df-pws 17077  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-srg 19657  df-ring 19700  df-cring 19701  df-rnghom 19874  df-subrg 19937  df-lmod 20040  df-lss 20109  df-lsp 20149  df-assa 20970  df-asp 20971  df-ascl 20972  df-psr 21022  df-mvr 21023  df-mpl 21024  df-evls 21192
This theorem is referenced by:  mzpmfp  40485
  Copyright terms: Public domain W3C validator