| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpfconst | Structured version Visualization version GIF version | ||
| Description: Constants are multivariate polynomial functions. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| Ref | Expression |
|---|---|
| mpfconst.b | ⊢ 𝐵 = (Base‘𝑆) |
| mpfconst.q | ⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) |
| mpfconst.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| mpfconst.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| mpfconst.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| mpfconst.x | ⊢ (𝜑 → 𝑋 ∈ 𝑅) |
| Ref | Expression |
|---|---|
| mpfconst | ⊢ (𝜑 → ((𝐵 ↑m 𝐼) × {𝑋}) ∈ 𝑄) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . 4 ⊢ ((𝐼 evalSub 𝑆)‘𝑅) = ((𝐼 evalSub 𝑆)‘𝑅) | |
| 2 | eqid 2730 | . . . 4 ⊢ (𝐼 mPoly (𝑆 ↾s 𝑅)) = (𝐼 mPoly (𝑆 ↾s 𝑅)) | |
| 3 | eqid 2730 | . . . 4 ⊢ (𝑆 ↾s 𝑅) = (𝑆 ↾s 𝑅) | |
| 4 | mpfconst.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
| 5 | eqid 2730 | . . . 4 ⊢ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅))) = (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅))) | |
| 6 | mpfconst.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 7 | mpfconst.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 8 | mpfconst.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
| 9 | mpfconst.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑅) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | evlssca 22002 | . . 3 ⊢ (𝜑 → (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑋)) = ((𝐵 ↑m 𝐼) × {𝑋})) |
| 11 | eqid 2730 | . . . . . . 7 ⊢ (𝑆 ↑s (𝐵 ↑m 𝐼)) = (𝑆 ↑s (𝐵 ↑m 𝐼)) | |
| 12 | 1, 2, 3, 11, 4 | evlsrhm 22001 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) RingHom (𝑆 ↑s (𝐵 ↑m 𝐼)))) |
| 13 | 6, 7, 8, 12 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) RingHom (𝑆 ↑s (𝐵 ↑m 𝐼)))) |
| 14 | eqid 2730 | . . . . . 6 ⊢ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) = (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) | |
| 15 | eqid 2730 | . . . . . 6 ⊢ (Base‘(𝑆 ↑s (𝐵 ↑m 𝐼))) = (Base‘(𝑆 ↑s (𝐵 ↑m 𝐼))) | |
| 16 | 14, 15 | rhmf 20400 | . . . . 5 ⊢ (((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) RingHom (𝑆 ↑s (𝐵 ↑m 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))⟶(Base‘(𝑆 ↑s (𝐵 ↑m 𝐼)))) |
| 17 | ffn 6690 | . . . . 5 ⊢ (((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))⟶(Base‘(𝑆 ↑s (𝐵 ↑m 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) | |
| 18 | 13, 16, 17 | 3syl 18 | . . . 4 ⊢ (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 19 | 3 | subrgring 20489 | . . . . . . 7 ⊢ (𝑅 ∈ (SubRing‘𝑆) → (𝑆 ↾s 𝑅) ∈ Ring) |
| 20 | 8, 19 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑆 ↾s 𝑅) ∈ Ring) |
| 21 | eqid 2730 | . . . . . . 7 ⊢ (Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))) = (Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))) | |
| 22 | 2 | mplring 21934 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝑉 ∧ (𝑆 ↾s 𝑅) ∈ Ring) → (𝐼 mPoly (𝑆 ↾s 𝑅)) ∈ Ring) |
| 23 | 2 | mpllmod 21933 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝑉 ∧ (𝑆 ↾s 𝑅) ∈ Ring) → (𝐼 mPoly (𝑆 ↾s 𝑅)) ∈ LMod) |
| 24 | eqid 2730 | . . . . . . 7 ⊢ (Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) = (Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) | |
| 25 | 5, 21, 22, 23, 24, 14 | asclf 21797 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ (𝑆 ↾s 𝑅) ∈ Ring) → (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅))):(Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))))⟶(Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 26 | 6, 20, 25 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅))):(Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))))⟶(Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 27 | 4 | subrgss 20487 | . . . . . . . 8 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐵) |
| 28 | 3, 4 | ressbas2 17214 | . . . . . . . 8 ⊢ (𝑅 ⊆ 𝐵 → 𝑅 = (Base‘(𝑆 ↾s 𝑅))) |
| 29 | 8, 27, 28 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → 𝑅 = (Base‘(𝑆 ↾s 𝑅))) |
| 30 | ovexd 7424 | . . . . . . . . 9 ⊢ (𝜑 → (𝑆 ↾s 𝑅) ∈ V) | |
| 31 | 2, 6, 30 | mplsca 21928 | . . . . . . . 8 ⊢ (𝜑 → (𝑆 ↾s 𝑅) = (Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 32 | 31 | fveq2d 6864 | . . . . . . 7 ⊢ (𝜑 → (Base‘(𝑆 ↾s 𝑅)) = (Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))))) |
| 33 | 29, 32 | eqtrd 2765 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))))) |
| 34 | 9, 33 | eleqtrd 2831 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))))) |
| 35 | 26, 34 | ffvelcdmd 7059 | . . . 4 ⊢ (𝜑 → ((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑋) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 36 | fnfvelrn 7054 | . . . 4 ⊢ ((((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ ((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑋) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑋)) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅)) | |
| 37 | 18, 35, 36 | syl2anc 584 | . . 3 ⊢ (𝜑 → (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑋)) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅)) |
| 38 | 10, 37 | eqeltrrd 2830 | . 2 ⊢ (𝜑 → ((𝐵 ↑m 𝐼) × {𝑋}) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅)) |
| 39 | mpfconst.q | . 2 ⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) | |
| 40 | 38, 39 | eleqtrrdi 2840 | 1 ⊢ (𝜑 → ((𝐵 ↑m 𝐼) × {𝑋}) ∈ 𝑄) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3916 {csn 4591 × cxp 5638 ran crn 5641 Fn wfn 6508 ⟶wf 6509 ‘cfv 6513 (class class class)co 7389 ↑m cmap 8801 Basecbs 17185 ↾s cress 17206 Scalarcsca 17229 ↑s cpws 17415 Ringcrg 20148 CRingccrg 20149 RingHom crh 20384 SubRingcsubrg 20484 algSccascl 21767 mPoly cmpl 21821 evalSub ces 21985 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-of 7655 df-ofr 7656 df-om 7845 df-1st 7970 df-2nd 7971 df-supp 8142 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-er 8673 df-map 8803 df-pm 8804 df-ixp 8873 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-fsupp 9319 df-sup 9399 df-oi 9469 df-card 9898 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-fz 13475 df-fzo 13622 df-seq 13973 df-hash 14302 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-hom 17250 df-cco 17251 df-0g 17410 df-gsum 17411 df-prds 17416 df-pws 17418 df-mre 17553 df-mrc 17554 df-acs 17556 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18716 df-submnd 18717 df-grp 18874 df-minusg 18875 df-sbg 18876 df-mulg 19006 df-subg 19061 df-ghm 19151 df-cntz 19255 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-srg 20102 df-ring 20150 df-cring 20151 df-rhm 20387 df-subrng 20461 df-subrg 20485 df-lmod 20774 df-lss 20844 df-lsp 20884 df-assa 21768 df-asp 21769 df-ascl 21770 df-psr 21824 df-mvr 21825 df-mpl 21826 df-evls 21987 |
| This theorem is referenced by: mzpmfp 42728 |
| Copyright terms: Public domain | W3C validator |