MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpfconst Structured version   Visualization version   GIF version

Theorem mpfconst 22126
Description: Constants are multivariate polynomial functions. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypotheses
Ref Expression
mpfconst.b 𝐵 = (Base‘𝑆)
mpfconst.q 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅)
mpfconst.i (𝜑𝐼𝑉)
mpfconst.s (𝜑𝑆 ∈ CRing)
mpfconst.r (𝜑𝑅 ∈ (SubRing‘𝑆))
mpfconst.x (𝜑𝑋𝑅)
Assertion
Ref Expression
mpfconst (𝜑 → ((𝐵m 𝐼) × {𝑋}) ∈ 𝑄)

Proof of Theorem mpfconst
StepHypRef Expression
1 eqid 2736 . . . 4 ((𝐼 evalSub 𝑆)‘𝑅) = ((𝐼 evalSub 𝑆)‘𝑅)
2 eqid 2736 . . . 4 (𝐼 mPoly (𝑆s 𝑅)) = (𝐼 mPoly (𝑆s 𝑅))
3 eqid 2736 . . . 4 (𝑆s 𝑅) = (𝑆s 𝑅)
4 mpfconst.b . . . 4 𝐵 = (Base‘𝑆)
5 eqid 2736 . . . 4 (algSc‘(𝐼 mPoly (𝑆s 𝑅))) = (algSc‘(𝐼 mPoly (𝑆s 𝑅)))
6 mpfconst.i . . . 4 (𝜑𝐼𝑉)
7 mpfconst.s . . . 4 (𝜑𝑆 ∈ CRing)
8 mpfconst.r . . . 4 (𝜑𝑅 ∈ (SubRing‘𝑆))
9 mpfconst.x . . . 4 (𝜑𝑋𝑅)
101, 2, 3, 4, 5, 6, 7, 8, 9evlssca 22114 . . 3 (𝜑 → (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑋)) = ((𝐵m 𝐼) × {𝑋}))
11 eqid 2736 . . . . . . 7 (𝑆s (𝐵m 𝐼)) = (𝑆s (𝐵m 𝐼))
121, 2, 3, 11, 4evlsrhm 22113 . . . . . 6 ((𝐼𝑉𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s (𝐵m 𝐼))))
136, 7, 8, 12syl3anc 1372 . . . . 5 (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s (𝐵m 𝐼))))
14 eqid 2736 . . . . . 6 (Base‘(𝐼 mPoly (𝑆s 𝑅))) = (Base‘(𝐼 mPoly (𝑆s 𝑅)))
15 eqid 2736 . . . . . 6 (Base‘(𝑆s (𝐵m 𝐼))) = (Base‘(𝑆s (𝐵m 𝐼)))
1614, 15rhmf 20486 . . . . 5 (((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s (𝐵m 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆s 𝑅)))⟶(Base‘(𝑆s (𝐵m 𝐼))))
17 ffn 6735 . . . . 5 (((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆s 𝑅)))⟶(Base‘(𝑆s (𝐵m 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))))
1813, 16, 173syl 18 . . . 4 (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))))
193subrgring 20575 . . . . . . 7 (𝑅 ∈ (SubRing‘𝑆) → (𝑆s 𝑅) ∈ Ring)
208, 19syl 17 . . . . . 6 (𝜑 → (𝑆s 𝑅) ∈ Ring)
21 eqid 2736 . . . . . . 7 (Scalar‘(𝐼 mPoly (𝑆s 𝑅))) = (Scalar‘(𝐼 mPoly (𝑆s 𝑅)))
222mplring 22040 . . . . . . 7 ((𝐼𝑉 ∧ (𝑆s 𝑅) ∈ Ring) → (𝐼 mPoly (𝑆s 𝑅)) ∈ Ring)
232mpllmod 22039 . . . . . . 7 ((𝐼𝑉 ∧ (𝑆s 𝑅) ∈ Ring) → (𝐼 mPoly (𝑆s 𝑅)) ∈ LMod)
24 eqid 2736 . . . . . . 7 (Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅)))) = (Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅))))
255, 21, 22, 23, 24, 14asclf 21903 . . . . . 6 ((𝐼𝑉 ∧ (𝑆s 𝑅) ∈ Ring) → (algSc‘(𝐼 mPoly (𝑆s 𝑅))):(Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅))))⟶(Base‘(𝐼 mPoly (𝑆s 𝑅))))
266, 20, 25syl2anc 584 . . . . 5 (𝜑 → (algSc‘(𝐼 mPoly (𝑆s 𝑅))):(Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅))))⟶(Base‘(𝐼 mPoly (𝑆s 𝑅))))
274subrgss 20573 . . . . . . . 8 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐵)
283, 4ressbas2 17284 . . . . . . . 8 (𝑅𝐵𝑅 = (Base‘(𝑆s 𝑅)))
298, 27, 283syl 18 . . . . . . 7 (𝜑𝑅 = (Base‘(𝑆s 𝑅)))
30 ovexd 7467 . . . . . . . . 9 (𝜑 → (𝑆s 𝑅) ∈ V)
312, 6, 30mplsca 22034 . . . . . . . 8 (𝜑 → (𝑆s 𝑅) = (Scalar‘(𝐼 mPoly (𝑆s 𝑅))))
3231fveq2d 6909 . . . . . . 7 (𝜑 → (Base‘(𝑆s 𝑅)) = (Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅)))))
3329, 32eqtrd 2776 . . . . . 6 (𝜑𝑅 = (Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅)))))
349, 33eleqtrd 2842 . . . . 5 (𝜑𝑋 ∈ (Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅)))))
3526, 34ffvelcdmd 7104 . . . 4 (𝜑 → ((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑋) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
36 fnfvelrn 7099 . . . 4 ((((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ ((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑋) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑋)) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅))
3718, 35, 36syl2anc 584 . . 3 (𝜑 → (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑋)) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅))
3810, 37eqeltrrd 2841 . 2 (𝜑 → ((𝐵m 𝐼) × {𝑋}) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅))
39 mpfconst.q . 2 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅)
4038, 39eleqtrrdi 2851 1 (𝜑 → ((𝐵m 𝐼) × {𝑋}) ∈ 𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3479  wss 3950  {csn 4625   × cxp 5682  ran crn 5685   Fn wfn 6555  wf 6556  cfv 6560  (class class class)co 7432  m cmap 8867  Basecbs 17248  s cress 17275  Scalarcsca 17301  s cpws 17492  Ringcrg 20231  CRingccrg 20232   RingHom crh 20470  SubRingcsubrg 20570  algSccascl 21873   mPoly cmpl 21927   evalSub ces 22097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-ofr 7699  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-sup 9483  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-fzo 13696  df-seq 14044  df-hash 14371  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17487  df-gsum 17488  df-prds 17493  df-pws 17495  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-mulg 19087  df-subg 19142  df-ghm 19232  df-cntz 19336  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-srg 20185  df-ring 20233  df-cring 20234  df-rhm 20473  df-subrng 20547  df-subrg 20571  df-lmod 20861  df-lss 20931  df-lsp 20971  df-assa 21874  df-asp 21875  df-ascl 21876  df-psr 21930  df-mvr 21931  df-mpl 21932  df-evls 22099
This theorem is referenced by:  mzpmfp  42763
  Copyright terms: Public domain W3C validator