MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evls1muld Structured version   Visualization version   GIF version

Theorem evls1muld 22287
Description: Univariate polynomial evaluation of a product of polynomials. (Contributed by Thierry Arnoux, 24-Jan-2025.)
Hypotheses
Ref Expression
ressply1evl2.q 𝑄 = (𝑆 evalSub1 𝑅)
ressply1evl2.k 𝐾 = (Base‘𝑆)
ressply1evl2.w 𝑊 = (Poly1𝑈)
ressply1evl2.u 𝑈 = (𝑆s 𝑅)
ressply1evl2.b 𝐵 = (Base‘𝑊)
evls1muld.1 × = (.r𝑊)
evls1muld.2 · = (.r𝑆)
evls1muld.s (𝜑𝑆 ∈ CRing)
evls1muld.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evls1muld.m (𝜑𝑀𝐵)
evls1muld.n (𝜑𝑁𝐵)
evls1muld.c (𝜑𝐶𝐾)
Assertion
Ref Expression
evls1muld (𝜑 → ((𝑄‘(𝑀 × 𝑁))‘𝐶) = (((𝑄𝑀)‘𝐶) · ((𝑄𝑁)‘𝐶)))

Proof of Theorem evls1muld
StepHypRef Expression
1 id 22 . . . . . 6 (𝜑𝜑)
2 evls1muld.m . . . . . 6 (𝜑𝑀𝐵)
3 evls1muld.n . . . . . 6 (𝜑𝑁𝐵)
4 eqid 2731 . . . . . . 7 (Poly1𝑆) = (Poly1𝑆)
5 ressply1evl2.u . . . . . . 7 𝑈 = (𝑆s 𝑅)
6 ressply1evl2.w . . . . . . 7 𝑊 = (Poly1𝑈)
7 ressply1evl2.b . . . . . . 7 𝐵 = (Base‘𝑊)
8 evls1muld.r . . . . . . 7 (𝜑𝑅 ∈ (SubRing‘𝑆))
9 eqid 2731 . . . . . . 7 ((Poly1𝑆) ↾s 𝐵) = ((Poly1𝑆) ↾s 𝐵)
104, 5, 6, 7, 8, 9ressply1mul 22143 . . . . . 6 ((𝜑 ∧ (𝑀𝐵𝑁𝐵)) → (𝑀(.r𝑊)𝑁) = (𝑀(.r‘((Poly1𝑆) ↾s 𝐵))𝑁))
111, 2, 3, 10syl12anc 836 . . . . 5 (𝜑 → (𝑀(.r𝑊)𝑁) = (𝑀(.r‘((Poly1𝑆) ↾s 𝐵))𝑁))
12 evls1muld.1 . . . . . 6 × = (.r𝑊)
1312oveqi 7359 . . . . 5 (𝑀 × 𝑁) = (𝑀(.r𝑊)𝑁)
147fvexi 6836 . . . . . . 7 𝐵 ∈ V
15 eqid 2731 . . . . . . . 8 (.r‘(Poly1𝑆)) = (.r‘(Poly1𝑆))
169, 15ressmulr 17211 . . . . . . 7 (𝐵 ∈ V → (.r‘(Poly1𝑆)) = (.r‘((Poly1𝑆) ↾s 𝐵)))
1714, 16ax-mp 5 . . . . . 6 (.r‘(Poly1𝑆)) = (.r‘((Poly1𝑆) ↾s 𝐵))
1817oveqi 7359 . . . . 5 (𝑀(.r‘(Poly1𝑆))𝑁) = (𝑀(.r‘((Poly1𝑆) ↾s 𝐵))𝑁)
1911, 13, 183eqtr4g 2791 . . . 4 (𝜑 → (𝑀 × 𝑁) = (𝑀(.r‘(Poly1𝑆))𝑁))
2019fveq2d 6826 . . 3 (𝜑 → ((eval1𝑆)‘(𝑀 × 𝑁)) = ((eval1𝑆)‘(𝑀(.r‘(Poly1𝑆))𝑁)))
2120fveq1d 6824 . 2 (𝜑 → (((eval1𝑆)‘(𝑀 × 𝑁))‘𝐶) = (((eval1𝑆)‘(𝑀(.r‘(Poly1𝑆))𝑁))‘𝐶))
22 ressply1evl2.q . . . . . 6 𝑄 = (𝑆 evalSub1 𝑅)
23 ressply1evl2.k . . . . . 6 𝐾 = (Base‘𝑆)
24 eqid 2731 . . . . . 6 (eval1𝑆) = (eval1𝑆)
25 evls1muld.s . . . . . 6 (𝜑𝑆 ∈ CRing)
2622, 23, 6, 5, 7, 24, 25, 8ressply1evl 22285 . . . . 5 (𝜑𝑄 = ((eval1𝑆) ↾ 𝐵))
2726fveq1d 6824 . . . 4 (𝜑 → (𝑄‘(𝑀 × 𝑁)) = (((eval1𝑆) ↾ 𝐵)‘(𝑀 × 𝑁)))
285subrgring 20489 . . . . . . 7 (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring)
296ply1ring 22160 . . . . . . 7 (𝑈 ∈ Ring → 𝑊 ∈ Ring)
308, 28, 293syl 18 . . . . . 6 (𝜑𝑊 ∈ Ring)
317, 12, 30, 2, 3ringcld 20178 . . . . 5 (𝜑 → (𝑀 × 𝑁) ∈ 𝐵)
3231fvresd 6842 . . . 4 (𝜑 → (((eval1𝑆) ↾ 𝐵)‘(𝑀 × 𝑁)) = ((eval1𝑆)‘(𝑀 × 𝑁)))
3327, 32eqtr2d 2767 . . 3 (𝜑 → ((eval1𝑆)‘(𝑀 × 𝑁)) = (𝑄‘(𝑀 × 𝑁)))
3433fveq1d 6824 . 2 (𝜑 → (((eval1𝑆)‘(𝑀 × 𝑁))‘𝐶) = ((𝑄‘(𝑀 × 𝑁))‘𝐶))
35 eqid 2731 . . . 4 (Base‘(Poly1𝑆)) = (Base‘(Poly1𝑆))
36 evls1muld.c . . . 4 (𝜑𝐶𝐾)
37 eqid 2731 . . . . . . . 8 (PwSer1𝑈) = (PwSer1𝑈)
38 eqid 2731 . . . . . . . 8 (Base‘(PwSer1𝑈)) = (Base‘(PwSer1𝑈))
394, 5, 6, 7, 8, 37, 38, 35ressply1bas2 22140 . . . . . . 7 (𝜑𝐵 = ((Base‘(PwSer1𝑈)) ∩ (Base‘(Poly1𝑆))))
40 inss2 4185 . . . . . . 7 ((Base‘(PwSer1𝑈)) ∩ (Base‘(Poly1𝑆))) ⊆ (Base‘(Poly1𝑆))
4139, 40eqsstrdi 3974 . . . . . 6 (𝜑𝐵 ⊆ (Base‘(Poly1𝑆)))
4241, 2sseldd 3930 . . . . 5 (𝜑𝑀 ∈ (Base‘(Poly1𝑆)))
4326fveq1d 6824 . . . . . . 7 (𝜑 → (𝑄𝑀) = (((eval1𝑆) ↾ 𝐵)‘𝑀))
442fvresd 6842 . . . . . . 7 (𝜑 → (((eval1𝑆) ↾ 𝐵)‘𝑀) = ((eval1𝑆)‘𝑀))
4543, 44eqtr2d 2767 . . . . . 6 (𝜑 → ((eval1𝑆)‘𝑀) = (𝑄𝑀))
4645fveq1d 6824 . . . . 5 (𝜑 → (((eval1𝑆)‘𝑀)‘𝐶) = ((𝑄𝑀)‘𝐶))
4742, 46jca 511 . . . 4 (𝜑 → (𝑀 ∈ (Base‘(Poly1𝑆)) ∧ (((eval1𝑆)‘𝑀)‘𝐶) = ((𝑄𝑀)‘𝐶)))
4841, 3sseldd 3930 . . . . 5 (𝜑𝑁 ∈ (Base‘(Poly1𝑆)))
4926fveq1d 6824 . . . . . . 7 (𝜑 → (𝑄𝑁) = (((eval1𝑆) ↾ 𝐵)‘𝑁))
503fvresd 6842 . . . . . . 7 (𝜑 → (((eval1𝑆) ↾ 𝐵)‘𝑁) = ((eval1𝑆)‘𝑁))
5149, 50eqtr2d 2767 . . . . . 6 (𝜑 → ((eval1𝑆)‘𝑁) = (𝑄𝑁))
5251fveq1d 6824 . . . . 5 (𝜑 → (((eval1𝑆)‘𝑁)‘𝐶) = ((𝑄𝑁)‘𝐶))
5348, 52jca 511 . . . 4 (𝜑 → (𝑁 ∈ (Base‘(Poly1𝑆)) ∧ (((eval1𝑆)‘𝑁)‘𝐶) = ((𝑄𝑁)‘𝐶)))
54 evls1muld.2 . . . 4 · = (.r𝑆)
5524, 4, 23, 35, 25, 36, 47, 53, 15, 54evl1muld 22258 . . 3 (𝜑 → ((𝑀(.r‘(Poly1𝑆))𝑁) ∈ (Base‘(Poly1𝑆)) ∧ (((eval1𝑆)‘(𝑀(.r‘(Poly1𝑆))𝑁))‘𝐶) = (((𝑄𝑀)‘𝐶) · ((𝑄𝑁)‘𝐶))))
5655simprd 495 . 2 (𝜑 → (((eval1𝑆)‘(𝑀(.r‘(Poly1𝑆))𝑁))‘𝐶) = (((𝑄𝑀)‘𝐶) · ((𝑄𝑁)‘𝐶)))
5721, 34, 563eqtr3d 2774 1 (𝜑 → ((𝑄‘(𝑀 × 𝑁))‘𝐶) = (((𝑄𝑀)‘𝐶) · ((𝑄𝑁)‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  cin 3896  cres 5616  cfv 6481  (class class class)co 7346  Basecbs 17120  s cress 17141  .rcmulr 17162  Ringcrg 20151  CRingccrg 20152  SubRingcsubrg 20484  PwSer1cps1 22087  Poly1cpl1 22089   evalSub1 ces1 22228  eval1ce1 22229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19125  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-srg 20105  df-ring 20153  df-cring 20154  df-rhm 20390  df-subrng 20461  df-subrg 20485  df-lmod 20795  df-lss 20865  df-lsp 20905  df-assa 21790  df-asp 21791  df-ascl 21792  df-psr 21846  df-mvr 21847  df-mpl 21848  df-opsr 21850  df-evls 22009  df-evl 22010  df-psr1 22092  df-vr1 22093  df-ply1 22094  df-coe1 22095  df-evls1 22230  df-evl1 22231
This theorem is referenced by:  evls1maprhm  22291  irngnzply1lem  33703  minplyirred  33724  irredminply  33729  cos9thpiminplylem6  33800
  Copyright terms: Public domain W3C validator