MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evls1muld Structured version   Visualization version   GIF version

Theorem evls1muld 22292
Description: Univariate polynomial evaluation of a product of polynomials. (Contributed by Thierry Arnoux, 24-Jan-2025.)
Hypotheses
Ref Expression
ressply1evl2.q 𝑄 = (𝑆 evalSub1 𝑅)
ressply1evl2.k 𝐾 = (Base‘𝑆)
ressply1evl2.w 𝑊 = (Poly1𝑈)
ressply1evl2.u 𝑈 = (𝑆s 𝑅)
ressply1evl2.b 𝐵 = (Base‘𝑊)
evls1muld.1 × = (.r𝑊)
evls1muld.2 · = (.r𝑆)
evls1muld.s (𝜑𝑆 ∈ CRing)
evls1muld.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evls1muld.m (𝜑𝑀𝐵)
evls1muld.n (𝜑𝑁𝐵)
evls1muld.c (𝜑𝐶𝐾)
Assertion
Ref Expression
evls1muld (𝜑 → ((𝑄‘(𝑀 × 𝑁))‘𝐶) = (((𝑄𝑀)‘𝐶) · ((𝑄𝑁)‘𝐶)))

Proof of Theorem evls1muld
StepHypRef Expression
1 id 22 . . . . . 6 (𝜑𝜑)
2 evls1muld.m . . . . . 6 (𝜑𝑀𝐵)
3 evls1muld.n . . . . . 6 (𝜑𝑁𝐵)
4 eqid 2729 . . . . . . 7 (Poly1𝑆) = (Poly1𝑆)
5 ressply1evl2.u . . . . . . 7 𝑈 = (𝑆s 𝑅)
6 ressply1evl2.w . . . . . . 7 𝑊 = (Poly1𝑈)
7 ressply1evl2.b . . . . . . 7 𝐵 = (Base‘𝑊)
8 evls1muld.r . . . . . . 7 (𝜑𝑅 ∈ (SubRing‘𝑆))
9 eqid 2729 . . . . . . 7 ((Poly1𝑆) ↾s 𝐵) = ((Poly1𝑆) ↾s 𝐵)
104, 5, 6, 7, 8, 9ressply1mul 22148 . . . . . 6 ((𝜑 ∧ (𝑀𝐵𝑁𝐵)) → (𝑀(.r𝑊)𝑁) = (𝑀(.r‘((Poly1𝑆) ↾s 𝐵))𝑁))
111, 2, 3, 10syl12anc 836 . . . . 5 (𝜑 → (𝑀(.r𝑊)𝑁) = (𝑀(.r‘((Poly1𝑆) ↾s 𝐵))𝑁))
12 evls1muld.1 . . . . . 6 × = (.r𝑊)
1312oveqi 7382 . . . . 5 (𝑀 × 𝑁) = (𝑀(.r𝑊)𝑁)
147fvexi 6854 . . . . . . 7 𝐵 ∈ V
15 eqid 2729 . . . . . . . 8 (.r‘(Poly1𝑆)) = (.r‘(Poly1𝑆))
169, 15ressmulr 17246 . . . . . . 7 (𝐵 ∈ V → (.r‘(Poly1𝑆)) = (.r‘((Poly1𝑆) ↾s 𝐵)))
1714, 16ax-mp 5 . . . . . 6 (.r‘(Poly1𝑆)) = (.r‘((Poly1𝑆) ↾s 𝐵))
1817oveqi 7382 . . . . 5 (𝑀(.r‘(Poly1𝑆))𝑁) = (𝑀(.r‘((Poly1𝑆) ↾s 𝐵))𝑁)
1911, 13, 183eqtr4g 2789 . . . 4 (𝜑 → (𝑀 × 𝑁) = (𝑀(.r‘(Poly1𝑆))𝑁))
2019fveq2d 6844 . . 3 (𝜑 → ((eval1𝑆)‘(𝑀 × 𝑁)) = ((eval1𝑆)‘(𝑀(.r‘(Poly1𝑆))𝑁)))
2120fveq1d 6842 . 2 (𝜑 → (((eval1𝑆)‘(𝑀 × 𝑁))‘𝐶) = (((eval1𝑆)‘(𝑀(.r‘(Poly1𝑆))𝑁))‘𝐶))
22 ressply1evl2.q . . . . . 6 𝑄 = (𝑆 evalSub1 𝑅)
23 ressply1evl2.k . . . . . 6 𝐾 = (Base‘𝑆)
24 eqid 2729 . . . . . 6 (eval1𝑆) = (eval1𝑆)
25 evls1muld.s . . . . . 6 (𝜑𝑆 ∈ CRing)
2622, 23, 6, 5, 7, 24, 25, 8ressply1evl 22290 . . . . 5 (𝜑𝑄 = ((eval1𝑆) ↾ 𝐵))
2726fveq1d 6842 . . . 4 (𝜑 → (𝑄‘(𝑀 × 𝑁)) = (((eval1𝑆) ↾ 𝐵)‘(𝑀 × 𝑁)))
285subrgring 20494 . . . . . . 7 (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring)
296ply1ring 22165 . . . . . . 7 (𝑈 ∈ Ring → 𝑊 ∈ Ring)
308, 28, 293syl 18 . . . . . 6 (𝜑𝑊 ∈ Ring)
317, 12, 30, 2, 3ringcld 20180 . . . . 5 (𝜑 → (𝑀 × 𝑁) ∈ 𝐵)
3231fvresd 6860 . . . 4 (𝜑 → (((eval1𝑆) ↾ 𝐵)‘(𝑀 × 𝑁)) = ((eval1𝑆)‘(𝑀 × 𝑁)))
3327, 32eqtr2d 2765 . . 3 (𝜑 → ((eval1𝑆)‘(𝑀 × 𝑁)) = (𝑄‘(𝑀 × 𝑁)))
3433fveq1d 6842 . 2 (𝜑 → (((eval1𝑆)‘(𝑀 × 𝑁))‘𝐶) = ((𝑄‘(𝑀 × 𝑁))‘𝐶))
35 eqid 2729 . . . 4 (Base‘(Poly1𝑆)) = (Base‘(Poly1𝑆))
36 evls1muld.c . . . 4 (𝜑𝐶𝐾)
37 eqid 2729 . . . . . . . 8 (PwSer1𝑈) = (PwSer1𝑈)
38 eqid 2729 . . . . . . . 8 (Base‘(PwSer1𝑈)) = (Base‘(PwSer1𝑈))
394, 5, 6, 7, 8, 37, 38, 35ressply1bas2 22145 . . . . . . 7 (𝜑𝐵 = ((Base‘(PwSer1𝑈)) ∩ (Base‘(Poly1𝑆))))
40 inss2 4197 . . . . . . 7 ((Base‘(PwSer1𝑈)) ∩ (Base‘(Poly1𝑆))) ⊆ (Base‘(Poly1𝑆))
4139, 40eqsstrdi 3988 . . . . . 6 (𝜑𝐵 ⊆ (Base‘(Poly1𝑆)))
4241, 2sseldd 3944 . . . . 5 (𝜑𝑀 ∈ (Base‘(Poly1𝑆)))
4326fveq1d 6842 . . . . . . 7 (𝜑 → (𝑄𝑀) = (((eval1𝑆) ↾ 𝐵)‘𝑀))
442fvresd 6860 . . . . . . 7 (𝜑 → (((eval1𝑆) ↾ 𝐵)‘𝑀) = ((eval1𝑆)‘𝑀))
4543, 44eqtr2d 2765 . . . . . 6 (𝜑 → ((eval1𝑆)‘𝑀) = (𝑄𝑀))
4645fveq1d 6842 . . . . 5 (𝜑 → (((eval1𝑆)‘𝑀)‘𝐶) = ((𝑄𝑀)‘𝐶))
4742, 46jca 511 . . . 4 (𝜑 → (𝑀 ∈ (Base‘(Poly1𝑆)) ∧ (((eval1𝑆)‘𝑀)‘𝐶) = ((𝑄𝑀)‘𝐶)))
4841, 3sseldd 3944 . . . . 5 (𝜑𝑁 ∈ (Base‘(Poly1𝑆)))
4926fveq1d 6842 . . . . . . 7 (𝜑 → (𝑄𝑁) = (((eval1𝑆) ↾ 𝐵)‘𝑁))
503fvresd 6860 . . . . . . 7 (𝜑 → (((eval1𝑆) ↾ 𝐵)‘𝑁) = ((eval1𝑆)‘𝑁))
5149, 50eqtr2d 2765 . . . . . 6 (𝜑 → ((eval1𝑆)‘𝑁) = (𝑄𝑁))
5251fveq1d 6842 . . . . 5 (𝜑 → (((eval1𝑆)‘𝑁)‘𝐶) = ((𝑄𝑁)‘𝐶))
5348, 52jca 511 . . . 4 (𝜑 → (𝑁 ∈ (Base‘(Poly1𝑆)) ∧ (((eval1𝑆)‘𝑁)‘𝐶) = ((𝑄𝑁)‘𝐶)))
54 evls1muld.2 . . . 4 · = (.r𝑆)
5524, 4, 23, 35, 25, 36, 47, 53, 15, 54evl1muld 22263 . . 3 (𝜑 → ((𝑀(.r‘(Poly1𝑆))𝑁) ∈ (Base‘(Poly1𝑆)) ∧ (((eval1𝑆)‘(𝑀(.r‘(Poly1𝑆))𝑁))‘𝐶) = (((𝑄𝑀)‘𝐶) · ((𝑄𝑁)‘𝐶))))
5655simprd 495 . 2 (𝜑 → (((eval1𝑆)‘(𝑀(.r‘(Poly1𝑆))𝑁))‘𝐶) = (((𝑄𝑀)‘𝐶) · ((𝑄𝑁)‘𝐶)))
5721, 34, 563eqtr3d 2772 1 (𝜑 → ((𝑄‘(𝑀 × 𝑁))‘𝐶) = (((𝑄𝑀)‘𝐶) · ((𝑄𝑁)‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3444  cin 3910  cres 5633  cfv 6499  (class class class)co 7369  Basecbs 17155  s cress 17176  .rcmulr 17197  Ringcrg 20153  CRingccrg 20154  SubRingcsubrg 20489  PwSer1cps1 22092  Poly1cpl1 22094   evalSub1 ces1 22233  eval1ce1 22234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-srg 20107  df-ring 20155  df-cring 20156  df-rhm 20392  df-subrng 20466  df-subrg 20490  df-lmod 20800  df-lss 20870  df-lsp 20910  df-assa 21795  df-asp 21796  df-ascl 21797  df-psr 21851  df-mvr 21852  df-mpl 21853  df-opsr 21855  df-evls 22014  df-evl 22015  df-psr1 22097  df-vr1 22098  df-ply1 22099  df-coe1 22100  df-evls1 22235  df-evl1 22236
This theorem is referenced by:  evls1maprhm  22296  irngnzply1lem  33678  minplyirred  33694  irredminply  33699  cos9thpiminplylem6  33770
  Copyright terms: Public domain W3C validator