MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evls1muld Structured version   Visualization version   GIF version

Theorem evls1muld 22266
Description: Univariate polynomial evaluation of a product of polynomials. (Contributed by Thierry Arnoux, 24-Jan-2025.)
Hypotheses
Ref Expression
ressply1evl2.q 𝑄 = (𝑆 evalSub1 𝑅)
ressply1evl2.k 𝐾 = (Base‘𝑆)
ressply1evl2.w 𝑊 = (Poly1𝑈)
ressply1evl2.u 𝑈 = (𝑆s 𝑅)
ressply1evl2.b 𝐵 = (Base‘𝑊)
evls1muld.1 × = (.r𝑊)
evls1muld.2 · = (.r𝑆)
evls1muld.s (𝜑𝑆 ∈ CRing)
evls1muld.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evls1muld.m (𝜑𝑀𝐵)
evls1muld.n (𝜑𝑁𝐵)
evls1muld.c (𝜑𝐶𝐾)
Assertion
Ref Expression
evls1muld (𝜑 → ((𝑄‘(𝑀 × 𝑁))‘𝐶) = (((𝑄𝑀)‘𝐶) · ((𝑄𝑁)‘𝐶)))

Proof of Theorem evls1muld
StepHypRef Expression
1 id 22 . . . . . 6 (𝜑𝜑)
2 evls1muld.m . . . . . 6 (𝜑𝑀𝐵)
3 evls1muld.n . . . . . 6 (𝜑𝑁𝐵)
4 eqid 2730 . . . . . . 7 (Poly1𝑆) = (Poly1𝑆)
5 ressply1evl2.u . . . . . . 7 𝑈 = (𝑆s 𝑅)
6 ressply1evl2.w . . . . . . 7 𝑊 = (Poly1𝑈)
7 ressply1evl2.b . . . . . . 7 𝐵 = (Base‘𝑊)
8 evls1muld.r . . . . . . 7 (𝜑𝑅 ∈ (SubRing‘𝑆))
9 eqid 2730 . . . . . . 7 ((Poly1𝑆) ↾s 𝐵) = ((Poly1𝑆) ↾s 𝐵)
104, 5, 6, 7, 8, 9ressply1mul 22122 . . . . . 6 ((𝜑 ∧ (𝑀𝐵𝑁𝐵)) → (𝑀(.r𝑊)𝑁) = (𝑀(.r‘((Poly1𝑆) ↾s 𝐵))𝑁))
111, 2, 3, 10syl12anc 836 . . . . 5 (𝜑 → (𝑀(.r𝑊)𝑁) = (𝑀(.r‘((Poly1𝑆) ↾s 𝐵))𝑁))
12 evls1muld.1 . . . . . 6 × = (.r𝑊)
1312oveqi 7403 . . . . 5 (𝑀 × 𝑁) = (𝑀(.r𝑊)𝑁)
147fvexi 6875 . . . . . . 7 𝐵 ∈ V
15 eqid 2730 . . . . . . . 8 (.r‘(Poly1𝑆)) = (.r‘(Poly1𝑆))
169, 15ressmulr 17277 . . . . . . 7 (𝐵 ∈ V → (.r‘(Poly1𝑆)) = (.r‘((Poly1𝑆) ↾s 𝐵)))
1714, 16ax-mp 5 . . . . . 6 (.r‘(Poly1𝑆)) = (.r‘((Poly1𝑆) ↾s 𝐵))
1817oveqi 7403 . . . . 5 (𝑀(.r‘(Poly1𝑆))𝑁) = (𝑀(.r‘((Poly1𝑆) ↾s 𝐵))𝑁)
1911, 13, 183eqtr4g 2790 . . . 4 (𝜑 → (𝑀 × 𝑁) = (𝑀(.r‘(Poly1𝑆))𝑁))
2019fveq2d 6865 . . 3 (𝜑 → ((eval1𝑆)‘(𝑀 × 𝑁)) = ((eval1𝑆)‘(𝑀(.r‘(Poly1𝑆))𝑁)))
2120fveq1d 6863 . 2 (𝜑 → (((eval1𝑆)‘(𝑀 × 𝑁))‘𝐶) = (((eval1𝑆)‘(𝑀(.r‘(Poly1𝑆))𝑁))‘𝐶))
22 ressply1evl2.q . . . . . 6 𝑄 = (𝑆 evalSub1 𝑅)
23 ressply1evl2.k . . . . . 6 𝐾 = (Base‘𝑆)
24 eqid 2730 . . . . . 6 (eval1𝑆) = (eval1𝑆)
25 evls1muld.s . . . . . 6 (𝜑𝑆 ∈ CRing)
2622, 23, 6, 5, 7, 24, 25, 8ressply1evl 22264 . . . . 5 (𝜑𝑄 = ((eval1𝑆) ↾ 𝐵))
2726fveq1d 6863 . . . 4 (𝜑 → (𝑄‘(𝑀 × 𝑁)) = (((eval1𝑆) ↾ 𝐵)‘(𝑀 × 𝑁)))
285subrgring 20490 . . . . . . 7 (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring)
296ply1ring 22139 . . . . . . 7 (𝑈 ∈ Ring → 𝑊 ∈ Ring)
308, 28, 293syl 18 . . . . . 6 (𝜑𝑊 ∈ Ring)
317, 12, 30, 2, 3ringcld 20176 . . . . 5 (𝜑 → (𝑀 × 𝑁) ∈ 𝐵)
3231fvresd 6881 . . . 4 (𝜑 → (((eval1𝑆) ↾ 𝐵)‘(𝑀 × 𝑁)) = ((eval1𝑆)‘(𝑀 × 𝑁)))
3327, 32eqtr2d 2766 . . 3 (𝜑 → ((eval1𝑆)‘(𝑀 × 𝑁)) = (𝑄‘(𝑀 × 𝑁)))
3433fveq1d 6863 . 2 (𝜑 → (((eval1𝑆)‘(𝑀 × 𝑁))‘𝐶) = ((𝑄‘(𝑀 × 𝑁))‘𝐶))
35 eqid 2730 . . . 4 (Base‘(Poly1𝑆)) = (Base‘(Poly1𝑆))
36 evls1muld.c . . . 4 (𝜑𝐶𝐾)
37 eqid 2730 . . . . . . . 8 (PwSer1𝑈) = (PwSer1𝑈)
38 eqid 2730 . . . . . . . 8 (Base‘(PwSer1𝑈)) = (Base‘(PwSer1𝑈))
394, 5, 6, 7, 8, 37, 38, 35ressply1bas2 22119 . . . . . . 7 (𝜑𝐵 = ((Base‘(PwSer1𝑈)) ∩ (Base‘(Poly1𝑆))))
40 inss2 4204 . . . . . . 7 ((Base‘(PwSer1𝑈)) ∩ (Base‘(Poly1𝑆))) ⊆ (Base‘(Poly1𝑆))
4139, 40eqsstrdi 3994 . . . . . 6 (𝜑𝐵 ⊆ (Base‘(Poly1𝑆)))
4241, 2sseldd 3950 . . . . 5 (𝜑𝑀 ∈ (Base‘(Poly1𝑆)))
4326fveq1d 6863 . . . . . . 7 (𝜑 → (𝑄𝑀) = (((eval1𝑆) ↾ 𝐵)‘𝑀))
442fvresd 6881 . . . . . . 7 (𝜑 → (((eval1𝑆) ↾ 𝐵)‘𝑀) = ((eval1𝑆)‘𝑀))
4543, 44eqtr2d 2766 . . . . . 6 (𝜑 → ((eval1𝑆)‘𝑀) = (𝑄𝑀))
4645fveq1d 6863 . . . . 5 (𝜑 → (((eval1𝑆)‘𝑀)‘𝐶) = ((𝑄𝑀)‘𝐶))
4742, 46jca 511 . . . 4 (𝜑 → (𝑀 ∈ (Base‘(Poly1𝑆)) ∧ (((eval1𝑆)‘𝑀)‘𝐶) = ((𝑄𝑀)‘𝐶)))
4841, 3sseldd 3950 . . . . 5 (𝜑𝑁 ∈ (Base‘(Poly1𝑆)))
4926fveq1d 6863 . . . . . . 7 (𝜑 → (𝑄𝑁) = (((eval1𝑆) ↾ 𝐵)‘𝑁))
503fvresd 6881 . . . . . . 7 (𝜑 → (((eval1𝑆) ↾ 𝐵)‘𝑁) = ((eval1𝑆)‘𝑁))
5149, 50eqtr2d 2766 . . . . . 6 (𝜑 → ((eval1𝑆)‘𝑁) = (𝑄𝑁))
5251fveq1d 6863 . . . . 5 (𝜑 → (((eval1𝑆)‘𝑁)‘𝐶) = ((𝑄𝑁)‘𝐶))
5348, 52jca 511 . . . 4 (𝜑 → (𝑁 ∈ (Base‘(Poly1𝑆)) ∧ (((eval1𝑆)‘𝑁)‘𝐶) = ((𝑄𝑁)‘𝐶)))
54 evls1muld.2 . . . 4 · = (.r𝑆)
5524, 4, 23, 35, 25, 36, 47, 53, 15, 54evl1muld 22237 . . 3 (𝜑 → ((𝑀(.r‘(Poly1𝑆))𝑁) ∈ (Base‘(Poly1𝑆)) ∧ (((eval1𝑆)‘(𝑀(.r‘(Poly1𝑆))𝑁))‘𝐶) = (((𝑄𝑀)‘𝐶) · ((𝑄𝑁)‘𝐶))))
5655simprd 495 . 2 (𝜑 → (((eval1𝑆)‘(𝑀(.r‘(Poly1𝑆))𝑁))‘𝐶) = (((𝑄𝑀)‘𝐶) · ((𝑄𝑁)‘𝐶)))
5721, 34, 563eqtr3d 2773 1 (𝜑 → ((𝑄‘(𝑀 × 𝑁))‘𝐶) = (((𝑄𝑀)‘𝐶) · ((𝑄𝑁)‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  cin 3916  cres 5643  cfv 6514  (class class class)co 7390  Basecbs 17186  s cress 17207  .rcmulr 17228  Ringcrg 20149  CRingccrg 20150  SubRingcsubrg 20485  PwSer1cps1 22066  Poly1cpl1 22068   evalSub1 ces1 22207  eval1ce1 22208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-lmod 20775  df-lss 20845  df-lsp 20885  df-assa 21769  df-asp 21770  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-evls 21988  df-evl 21989  df-psr1 22071  df-vr1 22072  df-ply1 22073  df-coe1 22074  df-evls1 22209  df-evl1 22210
This theorem is referenced by:  evls1maprhm  22270  irngnzply1lem  33692  minplyirred  33708  irredminply  33713  cos9thpiminplylem6  33784
  Copyright terms: Public domain W3C validator