| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evls1muld | Structured version Visualization version GIF version | ||
| Description: Univariate polynomial evaluation of a product of polynomials. (Contributed by Thierry Arnoux, 24-Jan-2025.) |
| Ref | Expression |
|---|---|
| ressply1evl2.q | ⊢ 𝑄 = (𝑆 evalSub1 𝑅) |
| ressply1evl2.k | ⊢ 𝐾 = (Base‘𝑆) |
| ressply1evl2.w | ⊢ 𝑊 = (Poly1‘𝑈) |
| ressply1evl2.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| ressply1evl2.b | ⊢ 𝐵 = (Base‘𝑊) |
| evls1muld.1 | ⊢ × = (.r‘𝑊) |
| evls1muld.2 | ⊢ · = (.r‘𝑆) |
| evls1muld.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| evls1muld.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| evls1muld.m | ⊢ (𝜑 → 𝑀 ∈ 𝐵) |
| evls1muld.n | ⊢ (𝜑 → 𝑁 ∈ 𝐵) |
| evls1muld.c | ⊢ (𝜑 → 𝐶 ∈ 𝐾) |
| Ref | Expression |
|---|---|
| evls1muld | ⊢ (𝜑 → ((𝑄‘(𝑀 × 𝑁))‘𝐶) = (((𝑄‘𝑀)‘𝐶) · ((𝑄‘𝑁)‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . . . 6 ⊢ (𝜑 → 𝜑) | |
| 2 | evls1muld.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ 𝐵) | |
| 3 | evls1muld.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ 𝐵) | |
| 4 | eqid 2731 | . . . . . . 7 ⊢ (Poly1‘𝑆) = (Poly1‘𝑆) | |
| 5 | ressply1evl2.u | . . . . . . 7 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
| 6 | ressply1evl2.w | . . . . . . 7 ⊢ 𝑊 = (Poly1‘𝑈) | |
| 7 | ressply1evl2.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑊) | |
| 8 | evls1muld.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
| 9 | eqid 2731 | . . . . . . 7 ⊢ ((Poly1‘𝑆) ↾s 𝐵) = ((Poly1‘𝑆) ↾s 𝐵) | |
| 10 | 4, 5, 6, 7, 8, 9 | ressply1mul 22143 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀 ∈ 𝐵 ∧ 𝑁 ∈ 𝐵)) → (𝑀(.r‘𝑊)𝑁) = (𝑀(.r‘((Poly1‘𝑆) ↾s 𝐵))𝑁)) |
| 11 | 1, 2, 3, 10 | syl12anc 836 | . . . . 5 ⊢ (𝜑 → (𝑀(.r‘𝑊)𝑁) = (𝑀(.r‘((Poly1‘𝑆) ↾s 𝐵))𝑁)) |
| 12 | evls1muld.1 | . . . . . 6 ⊢ × = (.r‘𝑊) | |
| 13 | 12 | oveqi 7359 | . . . . 5 ⊢ (𝑀 × 𝑁) = (𝑀(.r‘𝑊)𝑁) |
| 14 | 7 | fvexi 6836 | . . . . . . 7 ⊢ 𝐵 ∈ V |
| 15 | eqid 2731 | . . . . . . . 8 ⊢ (.r‘(Poly1‘𝑆)) = (.r‘(Poly1‘𝑆)) | |
| 16 | 9, 15 | ressmulr 17211 | . . . . . . 7 ⊢ (𝐵 ∈ V → (.r‘(Poly1‘𝑆)) = (.r‘((Poly1‘𝑆) ↾s 𝐵))) |
| 17 | 14, 16 | ax-mp 5 | . . . . . 6 ⊢ (.r‘(Poly1‘𝑆)) = (.r‘((Poly1‘𝑆) ↾s 𝐵)) |
| 18 | 17 | oveqi 7359 | . . . . 5 ⊢ (𝑀(.r‘(Poly1‘𝑆))𝑁) = (𝑀(.r‘((Poly1‘𝑆) ↾s 𝐵))𝑁) |
| 19 | 11, 13, 18 | 3eqtr4g 2791 | . . . 4 ⊢ (𝜑 → (𝑀 × 𝑁) = (𝑀(.r‘(Poly1‘𝑆))𝑁)) |
| 20 | 19 | fveq2d 6826 | . . 3 ⊢ (𝜑 → ((eval1‘𝑆)‘(𝑀 × 𝑁)) = ((eval1‘𝑆)‘(𝑀(.r‘(Poly1‘𝑆))𝑁))) |
| 21 | 20 | fveq1d 6824 | . 2 ⊢ (𝜑 → (((eval1‘𝑆)‘(𝑀 × 𝑁))‘𝐶) = (((eval1‘𝑆)‘(𝑀(.r‘(Poly1‘𝑆))𝑁))‘𝐶)) |
| 22 | ressply1evl2.q | . . . . . 6 ⊢ 𝑄 = (𝑆 evalSub1 𝑅) | |
| 23 | ressply1evl2.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝑆) | |
| 24 | eqid 2731 | . . . . . 6 ⊢ (eval1‘𝑆) = (eval1‘𝑆) | |
| 25 | evls1muld.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 26 | 22, 23, 6, 5, 7, 24, 25, 8 | ressply1evl 22285 | . . . . 5 ⊢ (𝜑 → 𝑄 = ((eval1‘𝑆) ↾ 𝐵)) |
| 27 | 26 | fveq1d 6824 | . . . 4 ⊢ (𝜑 → (𝑄‘(𝑀 × 𝑁)) = (((eval1‘𝑆) ↾ 𝐵)‘(𝑀 × 𝑁))) |
| 28 | 5 | subrgring 20489 | . . . . . . 7 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring) |
| 29 | 6 | ply1ring 22160 | . . . . . . 7 ⊢ (𝑈 ∈ Ring → 𝑊 ∈ Ring) |
| 30 | 8, 28, 29 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ Ring) |
| 31 | 7, 12, 30, 2, 3 | ringcld 20178 | . . . . 5 ⊢ (𝜑 → (𝑀 × 𝑁) ∈ 𝐵) |
| 32 | 31 | fvresd 6842 | . . . 4 ⊢ (𝜑 → (((eval1‘𝑆) ↾ 𝐵)‘(𝑀 × 𝑁)) = ((eval1‘𝑆)‘(𝑀 × 𝑁))) |
| 33 | 27, 32 | eqtr2d 2767 | . . 3 ⊢ (𝜑 → ((eval1‘𝑆)‘(𝑀 × 𝑁)) = (𝑄‘(𝑀 × 𝑁))) |
| 34 | 33 | fveq1d 6824 | . 2 ⊢ (𝜑 → (((eval1‘𝑆)‘(𝑀 × 𝑁))‘𝐶) = ((𝑄‘(𝑀 × 𝑁))‘𝐶)) |
| 35 | eqid 2731 | . . . 4 ⊢ (Base‘(Poly1‘𝑆)) = (Base‘(Poly1‘𝑆)) | |
| 36 | evls1muld.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝐾) | |
| 37 | eqid 2731 | . . . . . . . 8 ⊢ (PwSer1‘𝑈) = (PwSer1‘𝑈) | |
| 38 | eqid 2731 | . . . . . . . 8 ⊢ (Base‘(PwSer1‘𝑈)) = (Base‘(PwSer1‘𝑈)) | |
| 39 | 4, 5, 6, 7, 8, 37, 38, 35 | ressply1bas2 22140 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = ((Base‘(PwSer1‘𝑈)) ∩ (Base‘(Poly1‘𝑆)))) |
| 40 | inss2 4185 | . . . . . . 7 ⊢ ((Base‘(PwSer1‘𝑈)) ∩ (Base‘(Poly1‘𝑆))) ⊆ (Base‘(Poly1‘𝑆)) | |
| 41 | 39, 40 | eqsstrdi 3974 | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ (Base‘(Poly1‘𝑆))) |
| 42 | 41, 2 | sseldd 3930 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (Base‘(Poly1‘𝑆))) |
| 43 | 26 | fveq1d 6824 | . . . . . . 7 ⊢ (𝜑 → (𝑄‘𝑀) = (((eval1‘𝑆) ↾ 𝐵)‘𝑀)) |
| 44 | 2 | fvresd 6842 | . . . . . . 7 ⊢ (𝜑 → (((eval1‘𝑆) ↾ 𝐵)‘𝑀) = ((eval1‘𝑆)‘𝑀)) |
| 45 | 43, 44 | eqtr2d 2767 | . . . . . 6 ⊢ (𝜑 → ((eval1‘𝑆)‘𝑀) = (𝑄‘𝑀)) |
| 46 | 45 | fveq1d 6824 | . . . . 5 ⊢ (𝜑 → (((eval1‘𝑆)‘𝑀)‘𝐶) = ((𝑄‘𝑀)‘𝐶)) |
| 47 | 42, 46 | jca 511 | . . . 4 ⊢ (𝜑 → (𝑀 ∈ (Base‘(Poly1‘𝑆)) ∧ (((eval1‘𝑆)‘𝑀)‘𝐶) = ((𝑄‘𝑀)‘𝐶))) |
| 48 | 41, 3 | sseldd 3930 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (Base‘(Poly1‘𝑆))) |
| 49 | 26 | fveq1d 6824 | . . . . . . 7 ⊢ (𝜑 → (𝑄‘𝑁) = (((eval1‘𝑆) ↾ 𝐵)‘𝑁)) |
| 50 | 3 | fvresd 6842 | . . . . . . 7 ⊢ (𝜑 → (((eval1‘𝑆) ↾ 𝐵)‘𝑁) = ((eval1‘𝑆)‘𝑁)) |
| 51 | 49, 50 | eqtr2d 2767 | . . . . . 6 ⊢ (𝜑 → ((eval1‘𝑆)‘𝑁) = (𝑄‘𝑁)) |
| 52 | 51 | fveq1d 6824 | . . . . 5 ⊢ (𝜑 → (((eval1‘𝑆)‘𝑁)‘𝐶) = ((𝑄‘𝑁)‘𝐶)) |
| 53 | 48, 52 | jca 511 | . . . 4 ⊢ (𝜑 → (𝑁 ∈ (Base‘(Poly1‘𝑆)) ∧ (((eval1‘𝑆)‘𝑁)‘𝐶) = ((𝑄‘𝑁)‘𝐶))) |
| 54 | evls1muld.2 | . . . 4 ⊢ · = (.r‘𝑆) | |
| 55 | 24, 4, 23, 35, 25, 36, 47, 53, 15, 54 | evl1muld 22258 | . . 3 ⊢ (𝜑 → ((𝑀(.r‘(Poly1‘𝑆))𝑁) ∈ (Base‘(Poly1‘𝑆)) ∧ (((eval1‘𝑆)‘(𝑀(.r‘(Poly1‘𝑆))𝑁))‘𝐶) = (((𝑄‘𝑀)‘𝐶) · ((𝑄‘𝑁)‘𝐶)))) |
| 56 | 55 | simprd 495 | . 2 ⊢ (𝜑 → (((eval1‘𝑆)‘(𝑀(.r‘(Poly1‘𝑆))𝑁))‘𝐶) = (((𝑄‘𝑀)‘𝐶) · ((𝑄‘𝑁)‘𝐶))) |
| 57 | 21, 34, 56 | 3eqtr3d 2774 | 1 ⊢ (𝜑 → ((𝑄‘(𝑀 × 𝑁))‘𝐶) = (((𝑄‘𝑀)‘𝐶) · ((𝑄‘𝑁)‘𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3896 ↾ cres 5616 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 ↾s cress 17141 .rcmulr 17162 Ringcrg 20151 CRingccrg 20152 SubRingcsubrg 20484 PwSer1cps1 22087 Poly1cpl1 22089 evalSub1 ces1 22228 eval1ce1 22229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-subg 19036 df-ghm 19125 df-cntz 19229 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-srg 20105 df-ring 20153 df-cring 20154 df-rhm 20390 df-subrng 20461 df-subrg 20485 df-lmod 20795 df-lss 20865 df-lsp 20905 df-assa 21790 df-asp 21791 df-ascl 21792 df-psr 21846 df-mvr 21847 df-mpl 21848 df-opsr 21850 df-evls 22009 df-evl 22010 df-psr1 22092 df-vr1 22093 df-ply1 22094 df-coe1 22095 df-evls1 22230 df-evl1 22231 |
| This theorem is referenced by: evls1maprhm 22291 irngnzply1lem 33703 minplyirred 33724 irredminply 33729 cos9thpiminplylem6 33800 |
| Copyright terms: Public domain | W3C validator |