MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evls1muld Structured version   Visualization version   GIF version

Theorem evls1muld 22310
Description: Univariate polynomial evaluation of a product of polynomials. (Contributed by Thierry Arnoux, 24-Jan-2025.)
Hypotheses
Ref Expression
ressply1evl2.q 𝑄 = (𝑆 evalSub1 𝑅)
ressply1evl2.k 𝐾 = (Base‘𝑆)
ressply1evl2.w 𝑊 = (Poly1𝑈)
ressply1evl2.u 𝑈 = (𝑆s 𝑅)
ressply1evl2.b 𝐵 = (Base‘𝑊)
evls1muld.1 × = (.r𝑊)
evls1muld.2 · = (.r𝑆)
evls1muld.s (𝜑𝑆 ∈ CRing)
evls1muld.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evls1muld.m (𝜑𝑀𝐵)
evls1muld.n (𝜑𝑁𝐵)
evls1muld.c (𝜑𝐶𝐾)
Assertion
Ref Expression
evls1muld (𝜑 → ((𝑄‘(𝑀 × 𝑁))‘𝐶) = (((𝑄𝑀)‘𝐶) · ((𝑄𝑁)‘𝐶)))

Proof of Theorem evls1muld
StepHypRef Expression
1 id 22 . . . . . 6 (𝜑𝜑)
2 evls1muld.m . . . . . 6 (𝜑𝑀𝐵)
3 evls1muld.n . . . . . 6 (𝜑𝑁𝐵)
4 eqid 2735 . . . . . . 7 (Poly1𝑆) = (Poly1𝑆)
5 ressply1evl2.u . . . . . . 7 𝑈 = (𝑆s 𝑅)
6 ressply1evl2.w . . . . . . 7 𝑊 = (Poly1𝑈)
7 ressply1evl2.b . . . . . . 7 𝐵 = (Base‘𝑊)
8 evls1muld.r . . . . . . 7 (𝜑𝑅 ∈ (SubRing‘𝑆))
9 eqid 2735 . . . . . . 7 ((Poly1𝑆) ↾s 𝐵) = ((Poly1𝑆) ↾s 𝐵)
104, 5, 6, 7, 8, 9ressply1mul 22166 . . . . . 6 ((𝜑 ∧ (𝑀𝐵𝑁𝐵)) → (𝑀(.r𝑊)𝑁) = (𝑀(.r‘((Poly1𝑆) ↾s 𝐵))𝑁))
111, 2, 3, 10syl12anc 836 . . . . 5 (𝜑 → (𝑀(.r𝑊)𝑁) = (𝑀(.r‘((Poly1𝑆) ↾s 𝐵))𝑁))
12 evls1muld.1 . . . . . 6 × = (.r𝑊)
1312oveqi 7418 . . . . 5 (𝑀 × 𝑁) = (𝑀(.r𝑊)𝑁)
147fvexi 6890 . . . . . . 7 𝐵 ∈ V
15 eqid 2735 . . . . . . . 8 (.r‘(Poly1𝑆)) = (.r‘(Poly1𝑆))
169, 15ressmulr 17321 . . . . . . 7 (𝐵 ∈ V → (.r‘(Poly1𝑆)) = (.r‘((Poly1𝑆) ↾s 𝐵)))
1714, 16ax-mp 5 . . . . . 6 (.r‘(Poly1𝑆)) = (.r‘((Poly1𝑆) ↾s 𝐵))
1817oveqi 7418 . . . . 5 (𝑀(.r‘(Poly1𝑆))𝑁) = (𝑀(.r‘((Poly1𝑆) ↾s 𝐵))𝑁)
1911, 13, 183eqtr4g 2795 . . . 4 (𝜑 → (𝑀 × 𝑁) = (𝑀(.r‘(Poly1𝑆))𝑁))
2019fveq2d 6880 . . 3 (𝜑 → ((eval1𝑆)‘(𝑀 × 𝑁)) = ((eval1𝑆)‘(𝑀(.r‘(Poly1𝑆))𝑁)))
2120fveq1d 6878 . 2 (𝜑 → (((eval1𝑆)‘(𝑀 × 𝑁))‘𝐶) = (((eval1𝑆)‘(𝑀(.r‘(Poly1𝑆))𝑁))‘𝐶))
22 ressply1evl2.q . . . . . 6 𝑄 = (𝑆 evalSub1 𝑅)
23 ressply1evl2.k . . . . . 6 𝐾 = (Base‘𝑆)
24 eqid 2735 . . . . . 6 (eval1𝑆) = (eval1𝑆)
25 evls1muld.s . . . . . 6 (𝜑𝑆 ∈ CRing)
2622, 23, 6, 5, 7, 24, 25, 8ressply1evl 22308 . . . . 5 (𝜑𝑄 = ((eval1𝑆) ↾ 𝐵))
2726fveq1d 6878 . . . 4 (𝜑 → (𝑄‘(𝑀 × 𝑁)) = (((eval1𝑆) ↾ 𝐵)‘(𝑀 × 𝑁)))
285subrgring 20534 . . . . . . 7 (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring)
296ply1ring 22183 . . . . . . 7 (𝑈 ∈ Ring → 𝑊 ∈ Ring)
308, 28, 293syl 18 . . . . . 6 (𝜑𝑊 ∈ Ring)
317, 12, 30, 2, 3ringcld 20220 . . . . 5 (𝜑 → (𝑀 × 𝑁) ∈ 𝐵)
3231fvresd 6896 . . . 4 (𝜑 → (((eval1𝑆) ↾ 𝐵)‘(𝑀 × 𝑁)) = ((eval1𝑆)‘(𝑀 × 𝑁)))
3327, 32eqtr2d 2771 . . 3 (𝜑 → ((eval1𝑆)‘(𝑀 × 𝑁)) = (𝑄‘(𝑀 × 𝑁)))
3433fveq1d 6878 . 2 (𝜑 → (((eval1𝑆)‘(𝑀 × 𝑁))‘𝐶) = ((𝑄‘(𝑀 × 𝑁))‘𝐶))
35 eqid 2735 . . . 4 (Base‘(Poly1𝑆)) = (Base‘(Poly1𝑆))
36 evls1muld.c . . . 4 (𝜑𝐶𝐾)
37 eqid 2735 . . . . . . . 8 (PwSer1𝑈) = (PwSer1𝑈)
38 eqid 2735 . . . . . . . 8 (Base‘(PwSer1𝑈)) = (Base‘(PwSer1𝑈))
394, 5, 6, 7, 8, 37, 38, 35ressply1bas2 22163 . . . . . . 7 (𝜑𝐵 = ((Base‘(PwSer1𝑈)) ∩ (Base‘(Poly1𝑆))))
40 inss2 4213 . . . . . . 7 ((Base‘(PwSer1𝑈)) ∩ (Base‘(Poly1𝑆))) ⊆ (Base‘(Poly1𝑆))
4139, 40eqsstrdi 4003 . . . . . 6 (𝜑𝐵 ⊆ (Base‘(Poly1𝑆)))
4241, 2sseldd 3959 . . . . 5 (𝜑𝑀 ∈ (Base‘(Poly1𝑆)))
4326fveq1d 6878 . . . . . . 7 (𝜑 → (𝑄𝑀) = (((eval1𝑆) ↾ 𝐵)‘𝑀))
442fvresd 6896 . . . . . . 7 (𝜑 → (((eval1𝑆) ↾ 𝐵)‘𝑀) = ((eval1𝑆)‘𝑀))
4543, 44eqtr2d 2771 . . . . . 6 (𝜑 → ((eval1𝑆)‘𝑀) = (𝑄𝑀))
4645fveq1d 6878 . . . . 5 (𝜑 → (((eval1𝑆)‘𝑀)‘𝐶) = ((𝑄𝑀)‘𝐶))
4742, 46jca 511 . . . 4 (𝜑 → (𝑀 ∈ (Base‘(Poly1𝑆)) ∧ (((eval1𝑆)‘𝑀)‘𝐶) = ((𝑄𝑀)‘𝐶)))
4841, 3sseldd 3959 . . . . 5 (𝜑𝑁 ∈ (Base‘(Poly1𝑆)))
4926fveq1d 6878 . . . . . . 7 (𝜑 → (𝑄𝑁) = (((eval1𝑆) ↾ 𝐵)‘𝑁))
503fvresd 6896 . . . . . . 7 (𝜑 → (((eval1𝑆) ↾ 𝐵)‘𝑁) = ((eval1𝑆)‘𝑁))
5149, 50eqtr2d 2771 . . . . . 6 (𝜑 → ((eval1𝑆)‘𝑁) = (𝑄𝑁))
5251fveq1d 6878 . . . . 5 (𝜑 → (((eval1𝑆)‘𝑁)‘𝐶) = ((𝑄𝑁)‘𝐶))
5348, 52jca 511 . . . 4 (𝜑 → (𝑁 ∈ (Base‘(Poly1𝑆)) ∧ (((eval1𝑆)‘𝑁)‘𝐶) = ((𝑄𝑁)‘𝐶)))
54 evls1muld.2 . . . 4 · = (.r𝑆)
5524, 4, 23, 35, 25, 36, 47, 53, 15, 54evl1muld 22281 . . 3 (𝜑 → ((𝑀(.r‘(Poly1𝑆))𝑁) ∈ (Base‘(Poly1𝑆)) ∧ (((eval1𝑆)‘(𝑀(.r‘(Poly1𝑆))𝑁))‘𝐶) = (((𝑄𝑀)‘𝐶) · ((𝑄𝑁)‘𝐶))))
5655simprd 495 . 2 (𝜑 → (((eval1𝑆)‘(𝑀(.r‘(Poly1𝑆))𝑁))‘𝐶) = (((𝑄𝑀)‘𝐶) · ((𝑄𝑁)‘𝐶)))
5721, 34, 563eqtr3d 2778 1 (𝜑 → ((𝑄‘(𝑀 × 𝑁))‘𝐶) = (((𝑄𝑀)‘𝐶) · ((𝑄𝑁)‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3459  cin 3925  cres 5656  cfv 6531  (class class class)co 7405  Basecbs 17228  s cress 17251  .rcmulr 17272  Ringcrg 20193  CRingccrg 20194  SubRingcsubrg 20529  PwSer1cps1 22110  Poly1cpl1 22112   evalSub1 ces1 22251  eval1ce1 22252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-ghm 19196  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-srg 20147  df-ring 20195  df-cring 20196  df-rhm 20432  df-subrng 20506  df-subrg 20530  df-lmod 20819  df-lss 20889  df-lsp 20929  df-assa 21813  df-asp 21814  df-ascl 21815  df-psr 21869  df-mvr 21870  df-mpl 21871  df-opsr 21873  df-evls 22032  df-evl 22033  df-psr1 22115  df-vr1 22116  df-ply1 22117  df-coe1 22118  df-evls1 22253  df-evl1 22254
This theorem is referenced by:  evls1maprhm  22314  irngnzply1lem  33731  minplyirred  33745  irredminply  33750  cos9thpiminplylem6  33821
  Copyright terms: Public domain W3C validator