| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evls1muld | Structured version Visualization version GIF version | ||
| Description: Univariate polynomial evaluation of a product of polynomials. (Contributed by Thierry Arnoux, 24-Jan-2025.) |
| Ref | Expression |
|---|---|
| ressply1evl2.q | ⊢ 𝑄 = (𝑆 evalSub1 𝑅) |
| ressply1evl2.k | ⊢ 𝐾 = (Base‘𝑆) |
| ressply1evl2.w | ⊢ 𝑊 = (Poly1‘𝑈) |
| ressply1evl2.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| ressply1evl2.b | ⊢ 𝐵 = (Base‘𝑊) |
| evls1muld.1 | ⊢ × = (.r‘𝑊) |
| evls1muld.2 | ⊢ · = (.r‘𝑆) |
| evls1muld.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| evls1muld.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| evls1muld.m | ⊢ (𝜑 → 𝑀 ∈ 𝐵) |
| evls1muld.n | ⊢ (𝜑 → 𝑁 ∈ 𝐵) |
| evls1muld.c | ⊢ (𝜑 → 𝐶 ∈ 𝐾) |
| Ref | Expression |
|---|---|
| evls1muld | ⊢ (𝜑 → ((𝑄‘(𝑀 × 𝑁))‘𝐶) = (((𝑄‘𝑀)‘𝐶) · ((𝑄‘𝑁)‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . . . 6 ⊢ (𝜑 → 𝜑) | |
| 2 | evls1muld.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ 𝐵) | |
| 3 | evls1muld.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ 𝐵) | |
| 4 | eqid 2735 | . . . . . . 7 ⊢ (Poly1‘𝑆) = (Poly1‘𝑆) | |
| 5 | ressply1evl2.u | . . . . . . 7 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
| 6 | ressply1evl2.w | . . . . . . 7 ⊢ 𝑊 = (Poly1‘𝑈) | |
| 7 | ressply1evl2.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑊) | |
| 8 | evls1muld.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
| 9 | eqid 2735 | . . . . . . 7 ⊢ ((Poly1‘𝑆) ↾s 𝐵) = ((Poly1‘𝑆) ↾s 𝐵) | |
| 10 | 4, 5, 6, 7, 8, 9 | ressply1mul 22166 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀 ∈ 𝐵 ∧ 𝑁 ∈ 𝐵)) → (𝑀(.r‘𝑊)𝑁) = (𝑀(.r‘((Poly1‘𝑆) ↾s 𝐵))𝑁)) |
| 11 | 1, 2, 3, 10 | syl12anc 836 | . . . . 5 ⊢ (𝜑 → (𝑀(.r‘𝑊)𝑁) = (𝑀(.r‘((Poly1‘𝑆) ↾s 𝐵))𝑁)) |
| 12 | evls1muld.1 | . . . . . 6 ⊢ × = (.r‘𝑊) | |
| 13 | 12 | oveqi 7418 | . . . . 5 ⊢ (𝑀 × 𝑁) = (𝑀(.r‘𝑊)𝑁) |
| 14 | 7 | fvexi 6890 | . . . . . . 7 ⊢ 𝐵 ∈ V |
| 15 | eqid 2735 | . . . . . . . 8 ⊢ (.r‘(Poly1‘𝑆)) = (.r‘(Poly1‘𝑆)) | |
| 16 | 9, 15 | ressmulr 17321 | . . . . . . 7 ⊢ (𝐵 ∈ V → (.r‘(Poly1‘𝑆)) = (.r‘((Poly1‘𝑆) ↾s 𝐵))) |
| 17 | 14, 16 | ax-mp 5 | . . . . . 6 ⊢ (.r‘(Poly1‘𝑆)) = (.r‘((Poly1‘𝑆) ↾s 𝐵)) |
| 18 | 17 | oveqi 7418 | . . . . 5 ⊢ (𝑀(.r‘(Poly1‘𝑆))𝑁) = (𝑀(.r‘((Poly1‘𝑆) ↾s 𝐵))𝑁) |
| 19 | 11, 13, 18 | 3eqtr4g 2795 | . . . 4 ⊢ (𝜑 → (𝑀 × 𝑁) = (𝑀(.r‘(Poly1‘𝑆))𝑁)) |
| 20 | 19 | fveq2d 6880 | . . 3 ⊢ (𝜑 → ((eval1‘𝑆)‘(𝑀 × 𝑁)) = ((eval1‘𝑆)‘(𝑀(.r‘(Poly1‘𝑆))𝑁))) |
| 21 | 20 | fveq1d 6878 | . 2 ⊢ (𝜑 → (((eval1‘𝑆)‘(𝑀 × 𝑁))‘𝐶) = (((eval1‘𝑆)‘(𝑀(.r‘(Poly1‘𝑆))𝑁))‘𝐶)) |
| 22 | ressply1evl2.q | . . . . . 6 ⊢ 𝑄 = (𝑆 evalSub1 𝑅) | |
| 23 | ressply1evl2.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝑆) | |
| 24 | eqid 2735 | . . . . . 6 ⊢ (eval1‘𝑆) = (eval1‘𝑆) | |
| 25 | evls1muld.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 26 | 22, 23, 6, 5, 7, 24, 25, 8 | ressply1evl 22308 | . . . . 5 ⊢ (𝜑 → 𝑄 = ((eval1‘𝑆) ↾ 𝐵)) |
| 27 | 26 | fveq1d 6878 | . . . 4 ⊢ (𝜑 → (𝑄‘(𝑀 × 𝑁)) = (((eval1‘𝑆) ↾ 𝐵)‘(𝑀 × 𝑁))) |
| 28 | 5 | subrgring 20534 | . . . . . . 7 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring) |
| 29 | 6 | ply1ring 22183 | . . . . . . 7 ⊢ (𝑈 ∈ Ring → 𝑊 ∈ Ring) |
| 30 | 8, 28, 29 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ Ring) |
| 31 | 7, 12, 30, 2, 3 | ringcld 20220 | . . . . 5 ⊢ (𝜑 → (𝑀 × 𝑁) ∈ 𝐵) |
| 32 | 31 | fvresd 6896 | . . . 4 ⊢ (𝜑 → (((eval1‘𝑆) ↾ 𝐵)‘(𝑀 × 𝑁)) = ((eval1‘𝑆)‘(𝑀 × 𝑁))) |
| 33 | 27, 32 | eqtr2d 2771 | . . 3 ⊢ (𝜑 → ((eval1‘𝑆)‘(𝑀 × 𝑁)) = (𝑄‘(𝑀 × 𝑁))) |
| 34 | 33 | fveq1d 6878 | . 2 ⊢ (𝜑 → (((eval1‘𝑆)‘(𝑀 × 𝑁))‘𝐶) = ((𝑄‘(𝑀 × 𝑁))‘𝐶)) |
| 35 | eqid 2735 | . . . 4 ⊢ (Base‘(Poly1‘𝑆)) = (Base‘(Poly1‘𝑆)) | |
| 36 | evls1muld.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝐾) | |
| 37 | eqid 2735 | . . . . . . . 8 ⊢ (PwSer1‘𝑈) = (PwSer1‘𝑈) | |
| 38 | eqid 2735 | . . . . . . . 8 ⊢ (Base‘(PwSer1‘𝑈)) = (Base‘(PwSer1‘𝑈)) | |
| 39 | 4, 5, 6, 7, 8, 37, 38, 35 | ressply1bas2 22163 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = ((Base‘(PwSer1‘𝑈)) ∩ (Base‘(Poly1‘𝑆)))) |
| 40 | inss2 4213 | . . . . . . 7 ⊢ ((Base‘(PwSer1‘𝑈)) ∩ (Base‘(Poly1‘𝑆))) ⊆ (Base‘(Poly1‘𝑆)) | |
| 41 | 39, 40 | eqsstrdi 4003 | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ (Base‘(Poly1‘𝑆))) |
| 42 | 41, 2 | sseldd 3959 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (Base‘(Poly1‘𝑆))) |
| 43 | 26 | fveq1d 6878 | . . . . . . 7 ⊢ (𝜑 → (𝑄‘𝑀) = (((eval1‘𝑆) ↾ 𝐵)‘𝑀)) |
| 44 | 2 | fvresd 6896 | . . . . . . 7 ⊢ (𝜑 → (((eval1‘𝑆) ↾ 𝐵)‘𝑀) = ((eval1‘𝑆)‘𝑀)) |
| 45 | 43, 44 | eqtr2d 2771 | . . . . . 6 ⊢ (𝜑 → ((eval1‘𝑆)‘𝑀) = (𝑄‘𝑀)) |
| 46 | 45 | fveq1d 6878 | . . . . 5 ⊢ (𝜑 → (((eval1‘𝑆)‘𝑀)‘𝐶) = ((𝑄‘𝑀)‘𝐶)) |
| 47 | 42, 46 | jca 511 | . . . 4 ⊢ (𝜑 → (𝑀 ∈ (Base‘(Poly1‘𝑆)) ∧ (((eval1‘𝑆)‘𝑀)‘𝐶) = ((𝑄‘𝑀)‘𝐶))) |
| 48 | 41, 3 | sseldd 3959 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (Base‘(Poly1‘𝑆))) |
| 49 | 26 | fveq1d 6878 | . . . . . . 7 ⊢ (𝜑 → (𝑄‘𝑁) = (((eval1‘𝑆) ↾ 𝐵)‘𝑁)) |
| 50 | 3 | fvresd 6896 | . . . . . . 7 ⊢ (𝜑 → (((eval1‘𝑆) ↾ 𝐵)‘𝑁) = ((eval1‘𝑆)‘𝑁)) |
| 51 | 49, 50 | eqtr2d 2771 | . . . . . 6 ⊢ (𝜑 → ((eval1‘𝑆)‘𝑁) = (𝑄‘𝑁)) |
| 52 | 51 | fveq1d 6878 | . . . . 5 ⊢ (𝜑 → (((eval1‘𝑆)‘𝑁)‘𝐶) = ((𝑄‘𝑁)‘𝐶)) |
| 53 | 48, 52 | jca 511 | . . . 4 ⊢ (𝜑 → (𝑁 ∈ (Base‘(Poly1‘𝑆)) ∧ (((eval1‘𝑆)‘𝑁)‘𝐶) = ((𝑄‘𝑁)‘𝐶))) |
| 54 | evls1muld.2 | . . . 4 ⊢ · = (.r‘𝑆) | |
| 55 | 24, 4, 23, 35, 25, 36, 47, 53, 15, 54 | evl1muld 22281 | . . 3 ⊢ (𝜑 → ((𝑀(.r‘(Poly1‘𝑆))𝑁) ∈ (Base‘(Poly1‘𝑆)) ∧ (((eval1‘𝑆)‘(𝑀(.r‘(Poly1‘𝑆))𝑁))‘𝐶) = (((𝑄‘𝑀)‘𝐶) · ((𝑄‘𝑁)‘𝐶)))) |
| 56 | 55 | simprd 495 | . 2 ⊢ (𝜑 → (((eval1‘𝑆)‘(𝑀(.r‘(Poly1‘𝑆))𝑁))‘𝐶) = (((𝑄‘𝑀)‘𝐶) · ((𝑄‘𝑁)‘𝐶))) |
| 57 | 21, 34, 56 | 3eqtr3d 2778 | 1 ⊢ (𝜑 → ((𝑄‘(𝑀 × 𝑁))‘𝐶) = (((𝑄‘𝑀)‘𝐶) · ((𝑄‘𝑁)‘𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∩ cin 3925 ↾ cres 5656 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 ↾s cress 17251 .rcmulr 17272 Ringcrg 20193 CRingccrg 20194 SubRingcsubrg 20529 PwSer1cps1 22110 Poly1cpl1 22112 evalSub1 ces1 22251 eval1ce1 22252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-ofr 7672 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-pm 8843 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-sup 9454 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-fzo 13672 df-seq 14020 df-hash 14349 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-hom 17295 df-cco 17296 df-0g 17455 df-gsum 17456 df-prds 17461 df-pws 17463 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-mhm 18761 df-submnd 18762 df-grp 18919 df-minusg 18920 df-sbg 18921 df-mulg 19051 df-subg 19106 df-ghm 19196 df-cntz 19300 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-srg 20147 df-ring 20195 df-cring 20196 df-rhm 20432 df-subrng 20506 df-subrg 20530 df-lmod 20819 df-lss 20889 df-lsp 20929 df-assa 21813 df-asp 21814 df-ascl 21815 df-psr 21869 df-mvr 21870 df-mpl 21871 df-opsr 21873 df-evls 22032 df-evl 22033 df-psr1 22115 df-vr1 22116 df-ply1 22117 df-coe1 22118 df-evls1 22253 df-evl1 22254 |
| This theorem is referenced by: evls1maprhm 22314 irngnzply1lem 33731 minplyirred 33745 irredminply 33750 cos9thpiminplylem6 33821 |
| Copyright terms: Public domain | W3C validator |