MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpfproj Structured version   Visualization version   GIF version

Theorem mpfproj 22038
Description: Projections are multivariate polynomial functions. (Contributed by Mario Carneiro, 20-Mar-2015.)
Hypotheses
Ref Expression
mpfconst.b 𝐵 = (Base‘𝑆)
mpfconst.q 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅)
mpfconst.i (𝜑𝐼𝑉)
mpfconst.s (𝜑𝑆 ∈ CRing)
mpfconst.r (𝜑𝑅 ∈ (SubRing‘𝑆))
mpfproj.j (𝜑𝐽𝐼)
Assertion
Ref Expression
mpfproj (𝜑 → (𝑓 ∈ (𝐵m 𝐼) ↦ (𝑓𝐽)) ∈ 𝑄)
Distinct variable groups:   𝐵,𝑓   𝑓,𝐼   𝑓,𝐽   𝑅,𝑓   𝑆,𝑓   𝑓,𝑉
Allowed substitution hints:   𝜑(𝑓)   𝑄(𝑓)

Proof of Theorem mpfproj
StepHypRef Expression
1 eqid 2733 . . 3 ((𝐼 evalSub 𝑆)‘𝑅) = ((𝐼 evalSub 𝑆)‘𝑅)
2 eqid 2733 . . 3 (𝐼 mVar (𝑆s 𝑅)) = (𝐼 mVar (𝑆s 𝑅))
3 eqid 2733 . . 3 (𝑆s 𝑅) = (𝑆s 𝑅)
4 mpfconst.b . . 3 𝐵 = (Base‘𝑆)
5 mpfconst.i . . 3 (𝜑𝐼𝑉)
6 mpfconst.s . . 3 (𝜑𝑆 ∈ CRing)
7 mpfconst.r . . 3 (𝜑𝑅 ∈ (SubRing‘𝑆))
8 mpfproj.j . . 3 (𝜑𝐽𝐼)
91, 2, 3, 4, 5, 6, 7, 8evlsvar 22026 . 2 (𝜑 → (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆s 𝑅))‘𝐽)) = (𝑓 ∈ (𝐵m 𝐼) ↦ (𝑓𝐽)))
10 eqid 2733 . . . . . . 7 (𝐼 mPoly (𝑆s 𝑅)) = (𝐼 mPoly (𝑆s 𝑅))
11 eqid 2733 . . . . . . 7 (𝑆s (𝐵m 𝐼)) = (𝑆s (𝐵m 𝐼))
121, 10, 3, 11, 4evlsrhm 22024 . . . . . 6 ((𝐼𝑉𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s (𝐵m 𝐼))))
135, 6, 7, 12syl3anc 1373 . . . . 5 (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s (𝐵m 𝐼))))
14 eqid 2733 . . . . . 6 (Base‘(𝐼 mPoly (𝑆s 𝑅))) = (Base‘(𝐼 mPoly (𝑆s 𝑅)))
15 eqid 2733 . . . . . 6 (Base‘(𝑆s (𝐵m 𝐼))) = (Base‘(𝑆s (𝐵m 𝐼)))
1614, 15rhmf 20404 . . . . 5 (((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s (𝐵m 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆s 𝑅)))⟶(Base‘(𝑆s (𝐵m 𝐼))))
17 ffn 6656 . . . . 5 (((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆s 𝑅)))⟶(Base‘(𝑆s (𝐵m 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))))
1813, 16, 173syl 18 . . . 4 (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))))
193subrgring 20491 . . . . . 6 (𝑅 ∈ (SubRing‘𝑆) → (𝑆s 𝑅) ∈ Ring)
207, 19syl 17 . . . . 5 (𝜑 → (𝑆s 𝑅) ∈ Ring)
2110, 2, 14, 5, 20, 8mvrcl 21930 . . . 4 (𝜑 → ((𝐼 mVar (𝑆s 𝑅))‘𝐽) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
22 fnfvelrn 7019 . . . 4 ((((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ ((𝐼 mVar (𝑆s 𝑅))‘𝐽) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆s 𝑅))‘𝐽)) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅))
2318, 21, 22syl2anc 584 . . 3 (𝜑 → (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆s 𝑅))‘𝐽)) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅))
24 mpfconst.q . . 3 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅)
2523, 24eleqtrrdi 2844 . 2 (𝜑 → (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆s 𝑅))‘𝐽)) ∈ 𝑄)
269, 25eqeltrrd 2834 1 (𝜑 → (𝑓 ∈ (𝐵m 𝐼) ↦ (𝑓𝐽)) ∈ 𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cmpt 5174  ran crn 5620   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7352  m cmap 8756  Basecbs 17122  s cress 17143  s cpws 17352  Ringcrg 20153  CRingccrg 20154   RingHom crh 20389  SubRingcsubrg 20486   mVar cmvr 21844   mPoly cmpl 21845   evalSub ces 22008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-ofr 7617  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-sup 9333  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-fzo 13557  df-seq 13911  df-hash 14240  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-hom 17187  df-cco 17188  df-0g 17347  df-gsum 17348  df-prds 17353  df-pws 17355  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-submnd 18694  df-grp 18851  df-minusg 18852  df-sbg 18853  df-mulg 18983  df-subg 19038  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-srg 20107  df-ring 20155  df-cring 20156  df-rhm 20392  df-subrng 20463  df-subrg 20487  df-lmod 20797  df-lss 20867  df-lsp 20907  df-assa 21792  df-asp 21793  df-ascl 21794  df-psr 21848  df-mvr 21849  df-mpl 21850  df-evls 22010
This theorem is referenced by:  mzpmfp  42864
  Copyright terms: Public domain W3C validator