Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpfproj | Structured version Visualization version GIF version |
Description: Projections are multivariate polynomial functions. (Contributed by Mario Carneiro, 20-Mar-2015.) |
Ref | Expression |
---|---|
mpfconst.b | ⊢ 𝐵 = (Base‘𝑆) |
mpfconst.q | ⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) |
mpfconst.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
mpfconst.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
mpfconst.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
mpfproj.j | ⊢ (𝜑 → 𝐽 ∈ 𝐼) |
Ref | Expression |
---|---|
mpfproj | ⊢ (𝜑 → (𝑓 ∈ (𝐵 ↑m 𝐼) ↦ (𝑓‘𝐽)) ∈ 𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ ((𝐼 evalSub 𝑆)‘𝑅) = ((𝐼 evalSub 𝑆)‘𝑅) | |
2 | eqid 2737 | . . 3 ⊢ (𝐼 mVar (𝑆 ↾s 𝑅)) = (𝐼 mVar (𝑆 ↾s 𝑅)) | |
3 | eqid 2737 | . . 3 ⊢ (𝑆 ↾s 𝑅) = (𝑆 ↾s 𝑅) | |
4 | mpfconst.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
5 | mpfconst.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
6 | mpfconst.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
7 | mpfconst.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
8 | mpfproj.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐼) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | evlsvar 21050 | . 2 ⊢ (𝜑 → (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆 ↾s 𝑅))‘𝐽)) = (𝑓 ∈ (𝐵 ↑m 𝐼) ↦ (𝑓‘𝐽))) |
10 | eqid 2737 | . . . . . . 7 ⊢ (𝐼 mPoly (𝑆 ↾s 𝑅)) = (𝐼 mPoly (𝑆 ↾s 𝑅)) | |
11 | eqid 2737 | . . . . . . 7 ⊢ (𝑆 ↑s (𝐵 ↑m 𝐼)) = (𝑆 ↑s (𝐵 ↑m 𝐼)) | |
12 | 1, 10, 3, 11, 4 | evlsrhm 21048 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) RingHom (𝑆 ↑s (𝐵 ↑m 𝐼)))) |
13 | 5, 6, 7, 12 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) RingHom (𝑆 ↑s (𝐵 ↑m 𝐼)))) |
14 | eqid 2737 | . . . . . 6 ⊢ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) = (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) | |
15 | eqid 2737 | . . . . . 6 ⊢ (Base‘(𝑆 ↑s (𝐵 ↑m 𝐼))) = (Base‘(𝑆 ↑s (𝐵 ↑m 𝐼))) | |
16 | 14, 15 | rhmf 19746 | . . . . 5 ⊢ (((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) RingHom (𝑆 ↑s (𝐵 ↑m 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))⟶(Base‘(𝑆 ↑s (𝐵 ↑m 𝐼)))) |
17 | ffn 6545 | . . . . 5 ⊢ (((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))⟶(Base‘(𝑆 ↑s (𝐵 ↑m 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) | |
18 | 13, 16, 17 | 3syl 18 | . . . 4 ⊢ (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
19 | 3 | subrgring 19803 | . . . . . 6 ⊢ (𝑅 ∈ (SubRing‘𝑆) → (𝑆 ↾s 𝑅) ∈ Ring) |
20 | 7, 19 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑆 ↾s 𝑅) ∈ Ring) |
21 | 10, 2, 14, 5, 20, 8 | mvrcl 20977 | . . . 4 ⊢ (𝜑 → ((𝐼 mVar (𝑆 ↾s 𝑅))‘𝐽) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
22 | fnfvelrn 6901 | . . . 4 ⊢ ((((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ ((𝐼 mVar (𝑆 ↾s 𝑅))‘𝐽) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆 ↾s 𝑅))‘𝐽)) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅)) | |
23 | 18, 21, 22 | syl2anc 587 | . . 3 ⊢ (𝜑 → (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆 ↾s 𝑅))‘𝐽)) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅)) |
24 | mpfconst.q | . . 3 ⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) | |
25 | 23, 24 | eleqtrrdi 2849 | . 2 ⊢ (𝜑 → (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆 ↾s 𝑅))‘𝐽)) ∈ 𝑄) |
26 | 9, 25 | eqeltrrd 2839 | 1 ⊢ (𝜑 → (𝑓 ∈ (𝐵 ↑m 𝐼) ↦ (𝑓‘𝐽)) ∈ 𝑄) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 ↦ cmpt 5135 ran crn 5552 Fn wfn 6375 ⟶wf 6376 ‘cfv 6380 (class class class)co 7213 ↑m cmap 8508 Basecbs 16760 ↾s cress 16784 ↑s cpws 16951 Ringcrg 19562 CRingccrg 19563 RingHom crh 19732 SubRingcsubrg 19796 mVar cmvr 20864 mPoly cmpl 20865 evalSub ces 21030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-of 7469 df-ofr 7470 df-om 7645 df-1st 7761 df-2nd 7762 df-supp 7904 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-map 8510 df-pm 8511 df-ixp 8579 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-fsupp 8986 df-sup 9058 df-oi 9126 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-fz 13096 df-fzo 13239 df-seq 13575 df-hash 13897 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-sca 16818 df-vsca 16819 df-ip 16820 df-tset 16821 df-ple 16822 df-ds 16824 df-hom 16826 df-cco 16827 df-0g 16946 df-gsum 16947 df-prds 16952 df-pws 16954 df-mre 17089 df-mrc 17090 df-acs 17092 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-mhm 18218 df-submnd 18219 df-grp 18368 df-minusg 18369 df-sbg 18370 df-mulg 18489 df-subg 18540 df-ghm 18620 df-cntz 18711 df-cmn 19172 df-abl 19173 df-mgp 19505 df-ur 19517 df-srg 19521 df-ring 19564 df-cring 19565 df-rnghom 19735 df-subrg 19798 df-lmod 19901 df-lss 19969 df-lsp 20009 df-assa 20815 df-asp 20816 df-ascl 20817 df-psr 20868 df-mvr 20869 df-mpl 20870 df-evls 21032 |
This theorem is referenced by: mzpmfp 40272 |
Copyright terms: Public domain | W3C validator |