![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpfproj | Structured version Visualization version GIF version |
Description: Projections are multivariate polynomial functions. (Contributed by Mario Carneiro, 20-Mar-2015.) |
Ref | Expression |
---|---|
mpfconst.b | ⊢ 𝐵 = (Base‘𝑆) |
mpfconst.q | ⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) |
mpfconst.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
mpfconst.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
mpfconst.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
mpfproj.j | ⊢ (𝜑 → 𝐽 ∈ 𝐼) |
Ref | Expression |
---|---|
mpfproj | ⊢ (𝜑 → (𝑓 ∈ (𝐵 ↑𝑚 𝐼) ↦ (𝑓‘𝐽)) ∈ 𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2771 | . . 3 ⊢ ((𝐼 evalSub 𝑆)‘𝑅) = ((𝐼 evalSub 𝑆)‘𝑅) | |
2 | eqid 2771 | . . 3 ⊢ (𝐼 mVar (𝑆 ↾s 𝑅)) = (𝐼 mVar (𝑆 ↾s 𝑅)) | |
3 | eqid 2771 | . . 3 ⊢ (𝑆 ↾s 𝑅) = (𝑆 ↾s 𝑅) | |
4 | mpfconst.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
5 | mpfconst.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
6 | mpfconst.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
7 | mpfconst.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
8 | mpfproj.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐼) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | evlsvar 19731 | . 2 ⊢ (𝜑 → (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆 ↾s 𝑅))‘𝐽)) = (𝑓 ∈ (𝐵 ↑𝑚 𝐼) ↦ (𝑓‘𝐽))) |
10 | eqid 2771 | . . . . . . 7 ⊢ (𝐼 mPoly (𝑆 ↾s 𝑅)) = (𝐼 mPoly (𝑆 ↾s 𝑅)) | |
11 | eqid 2771 | . . . . . . 7 ⊢ (𝑆 ↑s (𝐵 ↑𝑚 𝐼)) = (𝑆 ↑s (𝐵 ↑𝑚 𝐼)) | |
12 | 1, 10, 3, 11, 4 | evlsrhm 19729 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) RingHom (𝑆 ↑s (𝐵 ↑𝑚 𝐼)))) |
13 | 5, 6, 7, 12 | syl3anc 1476 | . . . . 5 ⊢ (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) RingHom (𝑆 ↑s (𝐵 ↑𝑚 𝐼)))) |
14 | eqid 2771 | . . . . . 6 ⊢ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) = (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) | |
15 | eqid 2771 | . . . . . 6 ⊢ (Base‘(𝑆 ↑s (𝐵 ↑𝑚 𝐼))) = (Base‘(𝑆 ↑s (𝐵 ↑𝑚 𝐼))) | |
16 | 14, 15 | rhmf 18929 | . . . . 5 ⊢ (((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) RingHom (𝑆 ↑s (𝐵 ↑𝑚 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))⟶(Base‘(𝑆 ↑s (𝐵 ↑𝑚 𝐼)))) |
17 | ffn 6183 | . . . . 5 ⊢ (((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))⟶(Base‘(𝑆 ↑s (𝐵 ↑𝑚 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) | |
18 | 13, 16, 17 | 3syl 18 | . . . 4 ⊢ (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
19 | 3 | subrgring 18986 | . . . . . 6 ⊢ (𝑅 ∈ (SubRing‘𝑆) → (𝑆 ↾s 𝑅) ∈ Ring) |
20 | 7, 19 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑆 ↾s 𝑅) ∈ Ring) |
21 | 10, 2, 14, 5, 20, 8 | mvrcl 19657 | . . . 4 ⊢ (𝜑 → ((𝐼 mVar (𝑆 ↾s 𝑅))‘𝐽) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
22 | fnfvelrn 6497 | . . . 4 ⊢ ((((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ ((𝐼 mVar (𝑆 ↾s 𝑅))‘𝐽) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆 ↾s 𝑅))‘𝐽)) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅)) | |
23 | 18, 21, 22 | syl2anc 573 | . . 3 ⊢ (𝜑 → (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆 ↾s 𝑅))‘𝐽)) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅)) |
24 | mpfconst.q | . . 3 ⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) | |
25 | 23, 24 | syl6eleqr 2861 | . 2 ⊢ (𝜑 → (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆 ↾s 𝑅))‘𝐽)) ∈ 𝑄) |
26 | 9, 25 | eqeltrrd 2851 | 1 ⊢ (𝜑 → (𝑓 ∈ (𝐵 ↑𝑚 𝐼) ↦ (𝑓‘𝐽)) ∈ 𝑄) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 ↦ cmpt 4863 ran crn 5250 Fn wfn 6024 ⟶wf 6025 ‘cfv 6029 (class class class)co 6791 ↑𝑚 cmap 8007 Basecbs 16057 ↾s cress 16058 ↑s cpws 16308 Ringcrg 18748 CRingccrg 18749 RingHom crh 18915 SubRingcsubrg 18979 mVar cmvr 19560 mPoly cmpl 19561 evalSub ces 19712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7094 ax-inf2 8700 ax-cnex 10192 ax-resscn 10193 ax-1cn 10194 ax-icn 10195 ax-addcl 10196 ax-addrcl 10197 ax-mulcl 10198 ax-mulrcl 10199 ax-mulcom 10200 ax-addass 10201 ax-mulass 10202 ax-distr 10203 ax-i2m1 10204 ax-1ne0 10205 ax-1rid 10206 ax-rnegex 10207 ax-rrecex 10208 ax-cnre 10209 ax-pre-lttri 10210 ax-pre-lttrn 10211 ax-pre-ltadd 10212 ax-pre-mulgt0 10213 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-iin 4657 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5821 df-ord 5867 df-on 5868 df-lim 5869 df-suc 5870 df-iota 5992 df-fun 6031 df-fn 6032 df-f 6033 df-f1 6034 df-fo 6035 df-f1o 6036 df-fv 6037 df-isom 6038 df-riota 6752 df-ov 6794 df-oprab 6795 df-mpt2 6796 df-of 7042 df-ofr 7043 df-om 7211 df-1st 7313 df-2nd 7314 df-supp 7445 df-wrecs 7557 df-recs 7619 df-rdg 7657 df-1o 7711 df-2o 7712 df-oadd 7715 df-er 7894 df-map 8009 df-pm 8010 df-ixp 8061 df-en 8108 df-dom 8109 df-sdom 8110 df-fin 8111 df-fsupp 8430 df-sup 8502 df-oi 8569 df-card 8963 df-pnf 10276 df-mnf 10277 df-xr 10278 df-ltxr 10279 df-le 10280 df-sub 10468 df-neg 10469 df-nn 11221 df-2 11279 df-3 11280 df-4 11281 df-5 11282 df-6 11283 df-7 11284 df-8 11285 df-9 11286 df-n0 11493 df-z 11578 df-dec 11694 df-uz 11887 df-fz 12527 df-fzo 12667 df-seq 13002 df-hash 13315 df-struct 16059 df-ndx 16060 df-slot 16061 df-base 16063 df-sets 16064 df-ress 16065 df-plusg 16155 df-mulr 16156 df-sca 16158 df-vsca 16159 df-ip 16160 df-tset 16161 df-ple 16162 df-ds 16165 df-hom 16167 df-cco 16168 df-0g 16303 df-gsum 16304 df-prds 16309 df-pws 16311 df-mre 16447 df-mrc 16448 df-acs 16450 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-mhm 17536 df-submnd 17537 df-grp 17626 df-minusg 17627 df-sbg 17628 df-mulg 17742 df-subg 17792 df-ghm 17859 df-cntz 17950 df-cmn 18395 df-abl 18396 df-mgp 18691 df-ur 18703 df-srg 18707 df-ring 18750 df-cring 18751 df-rnghom 18918 df-subrg 18981 df-lmod 19068 df-lss 19136 df-lsp 19178 df-assa 19520 df-asp 19521 df-ascl 19522 df-psr 19564 df-mvr 19565 df-mpl 19566 df-evls 19714 |
This theorem is referenced by: mzpmfp 37829 |
Copyright terms: Public domain | W3C validator |