Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpfproj Structured version   Visualization version   GIF version

Theorem mpfproj 20780
 Description: Projections are multivariate polynomial functions. (Contributed by Mario Carneiro, 20-Mar-2015.)
Hypotheses
Ref Expression
mpfconst.b 𝐵 = (Base‘𝑆)
mpfconst.q 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅)
mpfconst.i (𝜑𝐼𝑉)
mpfconst.s (𝜑𝑆 ∈ CRing)
mpfconst.r (𝜑𝑅 ∈ (SubRing‘𝑆))
mpfproj.j (𝜑𝐽𝐼)
Assertion
Ref Expression
mpfproj (𝜑 → (𝑓 ∈ (𝐵m 𝐼) ↦ (𝑓𝐽)) ∈ 𝑄)
Distinct variable groups:   𝐵,𝑓   𝑓,𝐼   𝑓,𝐽   𝑅,𝑓   𝑆,𝑓   𝑓,𝑉
Allowed substitution hints:   𝜑(𝑓)   𝑄(𝑓)

Proof of Theorem mpfproj
StepHypRef Expression
1 eqid 2798 . . 3 ((𝐼 evalSub 𝑆)‘𝑅) = ((𝐼 evalSub 𝑆)‘𝑅)
2 eqid 2798 . . 3 (𝐼 mVar (𝑆s 𝑅)) = (𝐼 mVar (𝑆s 𝑅))
3 eqid 2798 . . 3 (𝑆s 𝑅) = (𝑆s 𝑅)
4 mpfconst.b . . 3 𝐵 = (Base‘𝑆)
5 mpfconst.i . . 3 (𝜑𝐼𝑉)
6 mpfconst.s . . 3 (𝜑𝑆 ∈ CRing)
7 mpfconst.r . . 3 (𝜑𝑅 ∈ (SubRing‘𝑆))
8 mpfproj.j . . 3 (𝜑𝐽𝐼)
91, 2, 3, 4, 5, 6, 7, 8evlsvar 20768 . 2 (𝜑 → (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆s 𝑅))‘𝐽)) = (𝑓 ∈ (𝐵m 𝐼) ↦ (𝑓𝐽)))
10 eqid 2798 . . . . . . 7 (𝐼 mPoly (𝑆s 𝑅)) = (𝐼 mPoly (𝑆s 𝑅))
11 eqid 2798 . . . . . . 7 (𝑆s (𝐵m 𝐼)) = (𝑆s (𝐵m 𝐼))
121, 10, 3, 11, 4evlsrhm 20766 . . . . . 6 ((𝐼𝑉𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s (𝐵m 𝐼))))
135, 6, 7, 12syl3anc 1368 . . . . 5 (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s (𝐵m 𝐼))))
14 eqid 2798 . . . . . 6 (Base‘(𝐼 mPoly (𝑆s 𝑅))) = (Base‘(𝐼 mPoly (𝑆s 𝑅)))
15 eqid 2798 . . . . . 6 (Base‘(𝑆s (𝐵m 𝐼))) = (Base‘(𝑆s (𝐵m 𝐼)))
1614, 15rhmf 19478 . . . . 5 (((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s (𝐵m 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆s 𝑅)))⟶(Base‘(𝑆s (𝐵m 𝐼))))
17 ffn 6488 . . . . 5 (((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆s 𝑅)))⟶(Base‘(𝑆s (𝐵m 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))))
1813, 16, 173syl 18 . . . 4 (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))))
193subrgring 19535 . . . . . 6 (𝑅 ∈ (SubRing‘𝑆) → (𝑆s 𝑅) ∈ Ring)
207, 19syl 17 . . . . 5 (𝜑 → (𝑆s 𝑅) ∈ Ring)
2110, 2, 14, 5, 20, 8mvrcl 20696 . . . 4 (𝜑 → ((𝐼 mVar (𝑆s 𝑅))‘𝐽) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
22 fnfvelrn 6826 . . . 4 ((((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ ((𝐼 mVar (𝑆s 𝑅))‘𝐽) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆s 𝑅))‘𝐽)) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅))
2318, 21, 22syl2anc 587 . . 3 (𝜑 → (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆s 𝑅))‘𝐽)) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅))
24 mpfconst.q . . 3 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅)
2523, 24eleqtrrdi 2901 . 2 (𝜑 → (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆s 𝑅))‘𝐽)) ∈ 𝑄)
269, 25eqeltrrd 2891 1 (𝜑 → (𝑓 ∈ (𝐵m 𝐼) ↦ (𝑓𝐽)) ∈ 𝑄)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2111   ↦ cmpt 5111  ran crn 5521   Fn wfn 6320  ⟶wf 6321  ‘cfv 6325  (class class class)co 7136   ↑m cmap 8392  Basecbs 16478   ↾s cress 16479   ↑s cpws 16715  Ringcrg 19294  CRingccrg 19295   RingHom crh 19464  SubRingcsubrg 19528   mVar cmvr 20596   mPoly cmpl 20597   evalSub ces 20749 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-iin 4885  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-se 5480  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-isom 6334  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-of 7391  df-ofr 7392  df-om 7564  df-1st 7674  df-2nd 7675  df-supp 7817  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-2o 8089  df-oadd 8092  df-er 8275  df-map 8394  df-pm 8395  df-ixp 8448  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-fsupp 8821  df-sup 8893  df-oi 8961  df-card 9355  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11629  df-2 11691  df-3 11692  df-4 11693  df-5 11694  df-6 11695  df-7 11696  df-8 11697  df-9 11698  df-n0 11889  df-z 11973  df-dec 12090  df-uz 12235  df-fz 12889  df-fzo 13032  df-seq 13368  df-hash 13690  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-hom 16584  df-cco 16585  df-0g 16710  df-gsum 16711  df-prds 16716  df-pws 16718  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-mhm 17951  df-submnd 17952  df-grp 18101  df-minusg 18102  df-sbg 18103  df-mulg 18221  df-subg 18272  df-ghm 18352  df-cntz 18443  df-cmn 18904  df-abl 18905  df-mgp 19237  df-ur 19249  df-srg 19253  df-ring 19296  df-cring 19297  df-rnghom 19467  df-subrg 19530  df-lmod 19633  df-lss 19701  df-lsp 19741  df-assa 20547  df-asp 20548  df-ascl 20549  df-psr 20600  df-mvr 20601  df-mpl 20602  df-evls 20751 This theorem is referenced by:  mzpmfp  39731
 Copyright terms: Public domain W3C validator