![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resrhm | Structured version Visualization version GIF version |
Description: Restriction of a ring homomorphism to a subring is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015.) |
Ref | Expression |
---|---|
resrhm.u | ⊢ 𝑈 = (𝑆 ↾s 𝑋) |
Ref | Expression |
---|---|
resrhm | ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝐹 ↾ 𝑋) ∈ (𝑈 RingHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmrcl2 20369 | . . 3 ⊢ (𝐹 ∈ (𝑆 RingHom 𝑇) → 𝑇 ∈ Ring) | |
2 | resrhm.u | . . . 4 ⊢ 𝑈 = (𝑆 ↾s 𝑋) | |
3 | 2 | subrgring 20466 | . . 3 ⊢ (𝑋 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring) |
4 | 1, 3 | anim12ci 613 | . 2 ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝑈 ∈ Ring ∧ 𝑇 ∈ Ring)) |
5 | rhmghm 20376 | . . . 4 ⊢ (𝐹 ∈ (𝑆 RingHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | |
6 | subrgsubg 20469 | . . . 4 ⊢ (𝑋 ∈ (SubRing‘𝑆) → 𝑋 ∈ (SubGrp‘𝑆)) | |
7 | 2 | resghm 19147 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹 ↾ 𝑋) ∈ (𝑈 GrpHom 𝑇)) |
8 | 5, 6, 7 | syl2an 595 | . . 3 ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝐹 ↾ 𝑋) ∈ (𝑈 GrpHom 𝑇)) |
9 | eqid 2724 | . . . . . 6 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
10 | eqid 2724 | . . . . . 6 ⊢ (mulGrp‘𝑇) = (mulGrp‘𝑇) | |
11 | 9, 10 | rhmmhm 20371 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 RingHom 𝑇) → 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇))) |
12 | 9 | subrgsubm 20477 | . . . . 5 ⊢ (𝑋 ∈ (SubRing‘𝑆) → 𝑋 ∈ (SubMnd‘(mulGrp‘𝑆))) |
13 | eqid 2724 | . . . . . 6 ⊢ ((mulGrp‘𝑆) ↾s 𝑋) = ((mulGrp‘𝑆) ↾s 𝑋) | |
14 | 13 | resmhm 18735 | . . . . 5 ⊢ ((𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)) ∧ 𝑋 ∈ (SubMnd‘(mulGrp‘𝑆))) → (𝐹 ↾ 𝑋) ∈ (((mulGrp‘𝑆) ↾s 𝑋) MndHom (mulGrp‘𝑇))) |
15 | 11, 12, 14 | syl2an 595 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝐹 ↾ 𝑋) ∈ (((mulGrp‘𝑆) ↾s 𝑋) MndHom (mulGrp‘𝑇))) |
16 | rhmrcl1 20368 | . . . . . 6 ⊢ (𝐹 ∈ (𝑆 RingHom 𝑇) → 𝑆 ∈ Ring) | |
17 | 2, 9 | mgpress 20044 | . . . . . 6 ⊢ ((𝑆 ∈ Ring ∧ 𝑋 ∈ (SubRing‘𝑆)) → ((mulGrp‘𝑆) ↾s 𝑋) = (mulGrp‘𝑈)) |
18 | 16, 17 | sylan 579 | . . . . 5 ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → ((mulGrp‘𝑆) ↾s 𝑋) = (mulGrp‘𝑈)) |
19 | 18 | oveq1d 7416 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (((mulGrp‘𝑆) ↾s 𝑋) MndHom (mulGrp‘𝑇)) = ((mulGrp‘𝑈) MndHom (mulGrp‘𝑇))) |
20 | 15, 19 | eleqtrd 2827 | . . 3 ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝐹 ↾ 𝑋) ∈ ((mulGrp‘𝑈) MndHom (mulGrp‘𝑇))) |
21 | 8, 20 | jca 511 | . 2 ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → ((𝐹 ↾ 𝑋) ∈ (𝑈 GrpHom 𝑇) ∧ (𝐹 ↾ 𝑋) ∈ ((mulGrp‘𝑈) MndHom (mulGrp‘𝑇)))) |
22 | eqid 2724 | . . 3 ⊢ (mulGrp‘𝑈) = (mulGrp‘𝑈) | |
23 | 22, 10 | isrhm 20370 | . 2 ⊢ ((𝐹 ↾ 𝑋) ∈ (𝑈 RingHom 𝑇) ↔ ((𝑈 ∈ Ring ∧ 𝑇 ∈ Ring) ∧ ((𝐹 ↾ 𝑋) ∈ (𝑈 GrpHom 𝑇) ∧ (𝐹 ↾ 𝑋) ∈ ((mulGrp‘𝑈) MndHom (mulGrp‘𝑇))))) |
24 | 4, 21, 23 | sylanbrc 582 | 1 ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝐹 ↾ 𝑋) ∈ (𝑈 RingHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ↾ cres 5668 ‘cfv 6533 (class class class)co 7401 ↾s cress 17172 MndHom cmhm 18701 SubMndcsubmnd 18702 SubGrpcsubg 19037 GrpHom cghm 19128 mulGrpcmgp 20029 Ringcrg 20128 RingHom crh 20361 SubRingcsubrg 20459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-2 12272 df-3 12273 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-0g 17386 df-mgm 18563 df-sgrp 18642 df-mnd 18658 df-mhm 18703 df-submnd 18704 df-grp 18856 df-subg 19040 df-ghm 19129 df-mgp 20030 df-ur 20077 df-ring 20130 df-rhm 20364 df-subrg 20461 |
This theorem is referenced by: imadrhmcl 20638 evlsval2 21960 evlsval3 41620 |
Copyright terms: Public domain | W3C validator |