MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resrhm Structured version   Visualization version   GIF version

Theorem resrhm 20618
Description: Restriction of a ring homomorphism to a subring is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015.)
Hypothesis
Ref Expression
resrhm.u 𝑈 = (𝑆s 𝑋)
Assertion
Ref Expression
resrhm ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝐹𝑋) ∈ (𝑈 RingHom 𝑇))

Proof of Theorem resrhm
StepHypRef Expression
1 rhmrcl2 20494 . . 3 (𝐹 ∈ (𝑆 RingHom 𝑇) → 𝑇 ∈ Ring)
2 resrhm.u . . . 4 𝑈 = (𝑆s 𝑋)
32subrgring 20591 . . 3 (𝑋 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring)
41, 3anim12ci 614 . 2 ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝑈 ∈ Ring ∧ 𝑇 ∈ Ring))
5 rhmghm 20501 . . . 4 (𝐹 ∈ (𝑆 RingHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
6 subrgsubg 20594 . . . 4 (𝑋 ∈ (SubRing‘𝑆) → 𝑋 ∈ (SubGrp‘𝑆))
72resghm 19263 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹𝑋) ∈ (𝑈 GrpHom 𝑇))
85, 6, 7syl2an 596 . . 3 ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝐹𝑋) ∈ (𝑈 GrpHom 𝑇))
9 eqid 2735 . . . . . 6 (mulGrp‘𝑆) = (mulGrp‘𝑆)
10 eqid 2735 . . . . . 6 (mulGrp‘𝑇) = (mulGrp‘𝑇)
119, 10rhmmhm 20496 . . . . 5 (𝐹 ∈ (𝑆 RingHom 𝑇) → 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))
129subrgsubm 20602 . . . . 5 (𝑋 ∈ (SubRing‘𝑆) → 𝑋 ∈ (SubMnd‘(mulGrp‘𝑆)))
13 eqid 2735 . . . . . 6 ((mulGrp‘𝑆) ↾s 𝑋) = ((mulGrp‘𝑆) ↾s 𝑋)
1413resmhm 18846 . . . . 5 ((𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)) ∧ 𝑋 ∈ (SubMnd‘(mulGrp‘𝑆))) → (𝐹𝑋) ∈ (((mulGrp‘𝑆) ↾s 𝑋) MndHom (mulGrp‘𝑇)))
1511, 12, 14syl2an 596 . . . 4 ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝐹𝑋) ∈ (((mulGrp‘𝑆) ↾s 𝑋) MndHom (mulGrp‘𝑇)))
16 rhmrcl1 20493 . . . . . 6 (𝐹 ∈ (𝑆 RingHom 𝑇) → 𝑆 ∈ Ring)
172, 9mgpress 20167 . . . . . 6 ((𝑆 ∈ Ring ∧ 𝑋 ∈ (SubRing‘𝑆)) → ((mulGrp‘𝑆) ↾s 𝑋) = (mulGrp‘𝑈))
1816, 17sylan 580 . . . . 5 ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → ((mulGrp‘𝑆) ↾s 𝑋) = (mulGrp‘𝑈))
1918oveq1d 7446 . . . 4 ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (((mulGrp‘𝑆) ↾s 𝑋) MndHom (mulGrp‘𝑇)) = ((mulGrp‘𝑈) MndHom (mulGrp‘𝑇)))
2015, 19eleqtrd 2841 . . 3 ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝐹𝑋) ∈ ((mulGrp‘𝑈) MndHom (mulGrp‘𝑇)))
218, 20jca 511 . 2 ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → ((𝐹𝑋) ∈ (𝑈 GrpHom 𝑇) ∧ (𝐹𝑋) ∈ ((mulGrp‘𝑈) MndHom (mulGrp‘𝑇))))
22 eqid 2735 . . 3 (mulGrp‘𝑈) = (mulGrp‘𝑈)
2322, 10isrhm 20495 . 2 ((𝐹𝑋) ∈ (𝑈 RingHom 𝑇) ↔ ((𝑈 ∈ Ring ∧ 𝑇 ∈ Ring) ∧ ((𝐹𝑋) ∈ (𝑈 GrpHom 𝑇) ∧ (𝐹𝑋) ∈ ((mulGrp‘𝑈) MndHom (mulGrp‘𝑇)))))
244, 21, 23sylanbrc 583 1 ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝐹𝑋) ∈ (𝑈 RingHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  cres 5691  cfv 6563  (class class class)co 7431  s cress 17274   MndHom cmhm 18807  SubMndcsubmnd 18808  SubGrpcsubg 19151   GrpHom cghm 19243  mulGrpcmgp 20152  Ringcrg 20251   RingHom crh 20486  SubRingcsubrg 20586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-subg 19154  df-ghm 19244  df-mgp 20153  df-ur 20200  df-ring 20253  df-rhm 20489  df-subrg 20587
This theorem is referenced by:  imadrhmcl  20815  evlsval2  22129  evlsval3  42546
  Copyright terms: Public domain W3C validator