MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resrhm Structured version   Visualization version   GIF version

Theorem resrhm 20516
Description: Restriction of a ring homomorphism to a subring is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015.)
Hypothesis
Ref Expression
resrhm.u 𝑈 = (𝑆s 𝑋)
Assertion
Ref Expression
resrhm ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝐹𝑋) ∈ (𝑈 RingHom 𝑇))

Proof of Theorem resrhm
StepHypRef Expression
1 rhmrcl2 20395 . . 3 (𝐹 ∈ (𝑆 RingHom 𝑇) → 𝑇 ∈ Ring)
2 resrhm.u . . . 4 𝑈 = (𝑆s 𝑋)
32subrgring 20489 . . 3 (𝑋 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring)
41, 3anim12ci 614 . 2 ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝑈 ∈ Ring ∧ 𝑇 ∈ Ring))
5 rhmghm 20401 . . . 4 (𝐹 ∈ (𝑆 RingHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
6 subrgsubg 20492 . . . 4 (𝑋 ∈ (SubRing‘𝑆) → 𝑋 ∈ (SubGrp‘𝑆))
72resghm 19144 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹𝑋) ∈ (𝑈 GrpHom 𝑇))
85, 6, 7syl2an 596 . . 3 ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝐹𝑋) ∈ (𝑈 GrpHom 𝑇))
9 eqid 2731 . . . . . 6 (mulGrp‘𝑆) = (mulGrp‘𝑆)
10 eqid 2731 . . . . . 6 (mulGrp‘𝑇) = (mulGrp‘𝑇)
119, 10rhmmhm 20397 . . . . 5 (𝐹 ∈ (𝑆 RingHom 𝑇) → 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))
129subrgsubm 20500 . . . . 5 (𝑋 ∈ (SubRing‘𝑆) → 𝑋 ∈ (SubMnd‘(mulGrp‘𝑆)))
13 eqid 2731 . . . . . 6 ((mulGrp‘𝑆) ↾s 𝑋) = ((mulGrp‘𝑆) ↾s 𝑋)
1413resmhm 18728 . . . . 5 ((𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)) ∧ 𝑋 ∈ (SubMnd‘(mulGrp‘𝑆))) → (𝐹𝑋) ∈ (((mulGrp‘𝑆) ↾s 𝑋) MndHom (mulGrp‘𝑇)))
1511, 12, 14syl2an 596 . . . 4 ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝐹𝑋) ∈ (((mulGrp‘𝑆) ↾s 𝑋) MndHom (mulGrp‘𝑇)))
16 rhmrcl1 20394 . . . . . 6 (𝐹 ∈ (𝑆 RingHom 𝑇) → 𝑆 ∈ Ring)
172, 9mgpress 20068 . . . . . 6 ((𝑆 ∈ Ring ∧ 𝑋 ∈ (SubRing‘𝑆)) → ((mulGrp‘𝑆) ↾s 𝑋) = (mulGrp‘𝑈))
1816, 17sylan 580 . . . . 5 ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → ((mulGrp‘𝑆) ↾s 𝑋) = (mulGrp‘𝑈))
1918oveq1d 7361 . . . 4 ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (((mulGrp‘𝑆) ↾s 𝑋) MndHom (mulGrp‘𝑇)) = ((mulGrp‘𝑈) MndHom (mulGrp‘𝑇)))
2015, 19eleqtrd 2833 . . 3 ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝐹𝑋) ∈ ((mulGrp‘𝑈) MndHom (mulGrp‘𝑇)))
218, 20jca 511 . 2 ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → ((𝐹𝑋) ∈ (𝑈 GrpHom 𝑇) ∧ (𝐹𝑋) ∈ ((mulGrp‘𝑈) MndHom (mulGrp‘𝑇))))
22 eqid 2731 . . 3 (mulGrp‘𝑈) = (mulGrp‘𝑈)
2322, 10isrhm 20396 . 2 ((𝐹𝑋) ∈ (𝑈 RingHom 𝑇) ↔ ((𝑈 ∈ Ring ∧ 𝑇 ∈ Ring) ∧ ((𝐹𝑋) ∈ (𝑈 GrpHom 𝑇) ∧ (𝐹𝑋) ∈ ((mulGrp‘𝑈) MndHom (mulGrp‘𝑇)))))
244, 21, 23sylanbrc 583 1 ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝐹𝑋) ∈ (𝑈 RingHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cres 5616  cfv 6481  (class class class)co 7346  s cress 17141   MndHom cmhm 18689  SubMndcsubmnd 18690  SubGrpcsubg 19033   GrpHom cghm 19124  mulGrpcmgp 20058  Ringcrg 20151   RingHom crh 20387  SubRingcsubrg 20484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-subg 19036  df-ghm 19125  df-mgp 20059  df-ur 20100  df-ring 20153  df-rhm 20390  df-subrg 20485
This theorem is referenced by:  imadrhmcl  20712  evlsval2  22022  evlsval3  42651
  Copyright terms: Public domain W3C validator