Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resrhm | Structured version Visualization version GIF version |
Description: Restriction of a ring homomorphism to a subring is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015.) |
Ref | Expression |
---|---|
resrhm.u | ⊢ 𝑈 = (𝑆 ↾s 𝑋) |
Ref | Expression |
---|---|
resrhm | ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝐹 ↾ 𝑋) ∈ (𝑈 RingHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmrcl2 19543 | . . 3 ⊢ (𝐹 ∈ (𝑆 RingHom 𝑇) → 𝑇 ∈ Ring) | |
2 | resrhm.u | . . . 4 ⊢ 𝑈 = (𝑆 ↾s 𝑋) | |
3 | 2 | subrgring 19606 | . . 3 ⊢ (𝑋 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring) |
4 | 1, 3 | anim12ci 616 | . 2 ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝑈 ∈ Ring ∧ 𝑇 ∈ Ring)) |
5 | rhmghm 19548 | . . . 4 ⊢ (𝐹 ∈ (𝑆 RingHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | |
6 | subrgsubg 19609 | . . . 4 ⊢ (𝑋 ∈ (SubRing‘𝑆) → 𝑋 ∈ (SubGrp‘𝑆)) | |
7 | 2 | resghm 18441 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹 ↾ 𝑋) ∈ (𝑈 GrpHom 𝑇)) |
8 | 5, 6, 7 | syl2an 598 | . . 3 ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝐹 ↾ 𝑋) ∈ (𝑈 GrpHom 𝑇)) |
9 | eqid 2758 | . . . . . 6 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
10 | eqid 2758 | . . . . . 6 ⊢ (mulGrp‘𝑇) = (mulGrp‘𝑇) | |
11 | 9, 10 | rhmmhm 19545 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 RingHom 𝑇) → 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇))) |
12 | 9 | subrgsubm 19616 | . . . . 5 ⊢ (𝑋 ∈ (SubRing‘𝑆) → 𝑋 ∈ (SubMnd‘(mulGrp‘𝑆))) |
13 | eqid 2758 | . . . . . 6 ⊢ ((mulGrp‘𝑆) ↾s 𝑋) = ((mulGrp‘𝑆) ↾s 𝑋) | |
14 | 13 | resmhm 18051 | . . . . 5 ⊢ ((𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)) ∧ 𝑋 ∈ (SubMnd‘(mulGrp‘𝑆))) → (𝐹 ↾ 𝑋) ∈ (((mulGrp‘𝑆) ↾s 𝑋) MndHom (mulGrp‘𝑇))) |
15 | 11, 12, 14 | syl2an 598 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝐹 ↾ 𝑋) ∈ (((mulGrp‘𝑆) ↾s 𝑋) MndHom (mulGrp‘𝑇))) |
16 | rhmrcl1 19542 | . . . . . 6 ⊢ (𝐹 ∈ (𝑆 RingHom 𝑇) → 𝑆 ∈ Ring) | |
17 | 2, 9 | mgpress 19318 | . . . . . 6 ⊢ ((𝑆 ∈ Ring ∧ 𝑋 ∈ (SubRing‘𝑆)) → ((mulGrp‘𝑆) ↾s 𝑋) = (mulGrp‘𝑈)) |
18 | 16, 17 | sylan 583 | . . . . 5 ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → ((mulGrp‘𝑆) ↾s 𝑋) = (mulGrp‘𝑈)) |
19 | 18 | oveq1d 7165 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (((mulGrp‘𝑆) ↾s 𝑋) MndHom (mulGrp‘𝑇)) = ((mulGrp‘𝑈) MndHom (mulGrp‘𝑇))) |
20 | 15, 19 | eleqtrd 2854 | . . 3 ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝐹 ↾ 𝑋) ∈ ((mulGrp‘𝑈) MndHom (mulGrp‘𝑇))) |
21 | 8, 20 | jca 515 | . 2 ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → ((𝐹 ↾ 𝑋) ∈ (𝑈 GrpHom 𝑇) ∧ (𝐹 ↾ 𝑋) ∈ ((mulGrp‘𝑈) MndHom (mulGrp‘𝑇)))) |
22 | eqid 2758 | . . 3 ⊢ (mulGrp‘𝑈) = (mulGrp‘𝑈) | |
23 | 22, 10 | isrhm 19544 | . 2 ⊢ ((𝐹 ↾ 𝑋) ∈ (𝑈 RingHom 𝑇) ↔ ((𝑈 ∈ Ring ∧ 𝑇 ∈ Ring) ∧ ((𝐹 ↾ 𝑋) ∈ (𝑈 GrpHom 𝑇) ∧ (𝐹 ↾ 𝑋) ∈ ((mulGrp‘𝑈) MndHom (mulGrp‘𝑇))))) |
24 | 4, 21, 23 | sylanbrc 586 | 1 ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝐹 ↾ 𝑋) ∈ (𝑈 RingHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ↾ cres 5526 ‘cfv 6335 (class class class)co 7150 ↾s cress 16542 MndHom cmhm 18020 SubMndcsubmnd 18021 SubGrpcsubg 18340 GrpHom cghm 18422 mulGrpcmgp 19307 Ringcrg 19365 RingHom crh 19535 SubRingcsubrg 19599 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-map 8418 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-3 11738 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-ress 16549 df-plusg 16636 df-mulr 16637 df-0g 16773 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-mhm 18022 df-submnd 18023 df-grp 18172 df-subg 18343 df-ghm 18423 df-mgp 19308 df-ur 19320 df-ring 19367 df-rnghom 19538 df-subrg 19601 |
This theorem is referenced by: evlsval2 20850 evlsval3 39777 |
Copyright terms: Public domain | W3C validator |