| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resrhm | Structured version Visualization version GIF version | ||
| Description: Restriction of a ring homomorphism to a subring is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015.) |
| Ref | Expression |
|---|---|
| resrhm.u | ⊢ 𝑈 = (𝑆 ↾s 𝑋) |
| Ref | Expression |
|---|---|
| resrhm | ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝐹 ↾ 𝑋) ∈ (𝑈 RingHom 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmrcl2 20435 | . . 3 ⊢ (𝐹 ∈ (𝑆 RingHom 𝑇) → 𝑇 ∈ Ring) | |
| 2 | resrhm.u | . . . 4 ⊢ 𝑈 = (𝑆 ↾s 𝑋) | |
| 3 | 2 | subrgring 20532 | . . 3 ⊢ (𝑋 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring) |
| 4 | 1, 3 | anim12ci 614 | . 2 ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝑈 ∈ Ring ∧ 𝑇 ∈ Ring)) |
| 5 | rhmghm 20442 | . . . 4 ⊢ (𝐹 ∈ (𝑆 RingHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | |
| 6 | subrgsubg 20535 | . . . 4 ⊢ (𝑋 ∈ (SubRing‘𝑆) → 𝑋 ∈ (SubGrp‘𝑆)) | |
| 7 | 2 | resghm 19213 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹 ↾ 𝑋) ∈ (𝑈 GrpHom 𝑇)) |
| 8 | 5, 6, 7 | syl2an 596 | . . 3 ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝐹 ↾ 𝑋) ∈ (𝑈 GrpHom 𝑇)) |
| 9 | eqid 2735 | . . . . . 6 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
| 10 | eqid 2735 | . . . . . 6 ⊢ (mulGrp‘𝑇) = (mulGrp‘𝑇) | |
| 11 | 9, 10 | rhmmhm 20437 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 RingHom 𝑇) → 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇))) |
| 12 | 9 | subrgsubm 20543 | . . . . 5 ⊢ (𝑋 ∈ (SubRing‘𝑆) → 𝑋 ∈ (SubMnd‘(mulGrp‘𝑆))) |
| 13 | eqid 2735 | . . . . . 6 ⊢ ((mulGrp‘𝑆) ↾s 𝑋) = ((mulGrp‘𝑆) ↾s 𝑋) | |
| 14 | 13 | resmhm 18796 | . . . . 5 ⊢ ((𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)) ∧ 𝑋 ∈ (SubMnd‘(mulGrp‘𝑆))) → (𝐹 ↾ 𝑋) ∈ (((mulGrp‘𝑆) ↾s 𝑋) MndHom (mulGrp‘𝑇))) |
| 15 | 11, 12, 14 | syl2an 596 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝐹 ↾ 𝑋) ∈ (((mulGrp‘𝑆) ↾s 𝑋) MndHom (mulGrp‘𝑇))) |
| 16 | rhmrcl1 20434 | . . . . . 6 ⊢ (𝐹 ∈ (𝑆 RingHom 𝑇) → 𝑆 ∈ Ring) | |
| 17 | 2, 9 | mgpress 20108 | . . . . . 6 ⊢ ((𝑆 ∈ Ring ∧ 𝑋 ∈ (SubRing‘𝑆)) → ((mulGrp‘𝑆) ↾s 𝑋) = (mulGrp‘𝑈)) |
| 18 | 16, 17 | sylan 580 | . . . . 5 ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → ((mulGrp‘𝑆) ↾s 𝑋) = (mulGrp‘𝑈)) |
| 19 | 18 | oveq1d 7418 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (((mulGrp‘𝑆) ↾s 𝑋) MndHom (mulGrp‘𝑇)) = ((mulGrp‘𝑈) MndHom (mulGrp‘𝑇))) |
| 20 | 15, 19 | eleqtrd 2836 | . . 3 ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝐹 ↾ 𝑋) ∈ ((mulGrp‘𝑈) MndHom (mulGrp‘𝑇))) |
| 21 | 8, 20 | jca 511 | . 2 ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → ((𝐹 ↾ 𝑋) ∈ (𝑈 GrpHom 𝑇) ∧ (𝐹 ↾ 𝑋) ∈ ((mulGrp‘𝑈) MndHom (mulGrp‘𝑇)))) |
| 22 | eqid 2735 | . . 3 ⊢ (mulGrp‘𝑈) = (mulGrp‘𝑈) | |
| 23 | 22, 10 | isrhm 20436 | . 2 ⊢ ((𝐹 ↾ 𝑋) ∈ (𝑈 RingHom 𝑇) ↔ ((𝑈 ∈ Ring ∧ 𝑇 ∈ Ring) ∧ ((𝐹 ↾ 𝑋) ∈ (𝑈 GrpHom 𝑇) ∧ (𝐹 ↾ 𝑋) ∈ ((mulGrp‘𝑈) MndHom (mulGrp‘𝑇))))) |
| 24 | 4, 21, 23 | sylanbrc 583 | 1 ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝐹 ↾ 𝑋) ∈ (𝑈 RingHom 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ↾ cres 5656 ‘cfv 6530 (class class class)co 7403 ↾s cress 17249 MndHom cmhm 18757 SubMndcsubmnd 18758 SubGrpcsubg 19101 GrpHom cghm 19193 mulGrpcmgp 20098 Ringcrg 20191 RingHom crh 20427 SubRingcsubrg 20527 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-0g 17453 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-mhm 18759 df-submnd 18760 df-grp 18917 df-subg 19104 df-ghm 19194 df-mgp 20099 df-ur 20140 df-ring 20193 df-rhm 20430 df-subrg 20528 |
| This theorem is referenced by: imadrhmcl 20755 evlsval2 22043 evlsval3 42529 |
| Copyright terms: Public domain | W3C validator |