MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatsgrp1 Structured version   Visualization version   GIF version

Theorem scmatsgrp1 21579
Description: The set of scalar matrices is a subgroup of the group/ring of diagonal matrices. (Contributed by AV, 21-Aug-2019.)
Hypotheses
Ref Expression
scmatid.a 𝐴 = (𝑁 Mat 𝑅)
scmatid.b 𝐵 = (Base‘𝐴)
scmatid.e 𝐸 = (Base‘𝑅)
scmatid.0 0 = (0g𝑅)
scmatid.s 𝑆 = (𝑁 ScMat 𝑅)
scmatsgrp1.d 𝐷 = (𝑁 DMat 𝑅)
scmatsgrp1.c 𝐶 = (𝐴s 𝐷)
Assertion
Ref Expression
scmatsgrp1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubGrp‘𝐶))

Proof of Theorem scmatsgrp1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scmatid.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
2 scmatid.b . . . . 5 𝐵 = (Base‘𝐴)
3 scmatid.e . . . . 5 𝐸 = (Base‘𝑅)
4 scmatid.0 . . . . 5 0 = (0g𝑅)
5 scmatid.s . . . . 5 𝑆 = (𝑁 ScMat 𝑅)
6 scmatsgrp1.d . . . . 5 𝐷 = (𝑁 DMat 𝑅)
71, 2, 3, 4, 5, 6scmatdmat 21572 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥𝑆𝑥𝐷))
87ssrdv 3923 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆𝐷)
91, 2, 4, 6dmatsgrp 21556 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝐷 ∈ (SubGrp‘𝐴))
109ancoms 458 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐷 ∈ (SubGrp‘𝐴))
11 scmatsgrp1.c . . . . . 6 𝐶 = (𝐴s 𝐷)
1211subgbas 18674 . . . . 5 (𝐷 ∈ (SubGrp‘𝐴) → 𝐷 = (Base‘𝐶))
1312eqcomd 2744 . . . 4 (𝐷 ∈ (SubGrp‘𝐴) → (Base‘𝐶) = 𝐷)
1410, 13syl 17 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝐶) = 𝐷)
158, 14sseqtrrd 3958 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ⊆ (Base‘𝐶))
161, 2, 3, 4, 5scmatid 21571 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) ∈ 𝑆)
1716ne0d 4266 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ≠ ∅)
1810adantr 480 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → 𝐷 ∈ (SubGrp‘𝐴))
197com12 32 . . . . . . 7 (𝑥𝑆 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑥𝐷))
2019adantr 480 . . . . . 6 ((𝑥𝑆𝑦𝑆) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑥𝐷))
2120impcom 407 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → 𝑥𝐷)
221, 2, 3, 4, 5, 6scmatdmat 21572 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦𝑆𝑦𝐷))
2322a1d 25 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥𝑆 → (𝑦𝑆𝑦𝐷)))
2423imp32 418 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → 𝑦𝐷)
25 eqid 2738 . . . . . . 7 (-g𝐴) = (-g𝐴)
26 eqid 2738 . . . . . . 7 (-g𝐶) = (-g𝐶)
2725, 11, 26subgsub 18682 . . . . . 6 ((𝐷 ∈ (SubGrp‘𝐴) ∧ 𝑥𝐷𝑦𝐷) → (𝑥(-g𝐴)𝑦) = (𝑥(-g𝐶)𝑦))
2827eqcomd 2744 . . . . 5 ((𝐷 ∈ (SubGrp‘𝐴) ∧ 𝑥𝐷𝑦𝐷) → (𝑥(-g𝐶)𝑦) = (𝑥(-g𝐴)𝑦))
2918, 21, 24, 28syl3anc 1369 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(-g𝐶)𝑦) = (𝑥(-g𝐴)𝑦))
301, 2, 3, 4, 5scmatsubcl 21574 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(-g𝐴)𝑦) ∈ 𝑆)
3129, 30eqeltrd 2839 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(-g𝐶)𝑦) ∈ 𝑆)
3231ralrimivva 3114 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥𝑆𝑦𝑆 (𝑥(-g𝐶)𝑦) ∈ 𝑆)
331, 2, 4, 6dmatsrng 21558 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝐷 ∈ (SubRing‘𝐴))
3433ancoms 458 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐷 ∈ (SubRing‘𝐴))
3511subrgring 19942 . . . 4 (𝐷 ∈ (SubRing‘𝐴) → 𝐶 ∈ Ring)
3634, 35syl 17 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
37 ringgrp 19703 . . 3 (𝐶 ∈ Ring → 𝐶 ∈ Grp)
38 eqid 2738 . . . 4 (Base‘𝐶) = (Base‘𝐶)
3938, 26issubg4 18689 . . 3 (𝐶 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐶) ↔ (𝑆 ⊆ (Base‘𝐶) ∧ 𝑆 ≠ ∅ ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(-g𝐶)𝑦) ∈ 𝑆)))
4036, 37, 393syl 18 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑆 ∈ (SubGrp‘𝐶) ↔ (𝑆 ⊆ (Base‘𝐶) ∧ 𝑆 ≠ ∅ ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(-g𝐶)𝑦) ∈ 𝑆)))
4115, 17, 32, 40mpbir3and 1340 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubGrp‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wss 3883  c0 4253  cfv 6418  (class class class)co 7255  Fincfn 8691  Basecbs 16840  s cress 16867  0gc0g 17067  Grpcgrp 18492  -gcsg 18494  SubGrpcsubg 18664  1rcur 19652  Ringcrg 19698  SubRingcsubrg 19935   Mat cmat 21464   DMat cdmat 21545   ScMat cscmat 21546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-ot 4567  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-0g 17069  df-gsum 17070  df-prds 17075  df-pws 17077  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-subrg 19937  df-lmod 20040  df-lss 20109  df-sra 20349  df-rgmod 20350  df-dsmm 20849  df-frlm 20864  df-mamu 21443  df-mat 21465  df-dmat 21547  df-scmat 21548
This theorem is referenced by:  scmatsrng1  21580
  Copyright terms: Public domain W3C validator