![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > scmatsgrp1 | Structured version Visualization version GIF version |
Description: The set of scalar matrices is a subgroup of the group/ring of diagonal matrices. (Contributed by AV, 21-Aug-2019.) |
Ref | Expression |
---|---|
scmatid.a | β’ π΄ = (π Mat π ) |
scmatid.b | β’ π΅ = (Baseβπ΄) |
scmatid.e | β’ πΈ = (Baseβπ ) |
scmatid.0 | β’ 0 = (0gβπ ) |
scmatid.s | β’ π = (π ScMat π ) |
scmatsgrp1.d | β’ π· = (π DMat π ) |
scmatsgrp1.c | β’ πΆ = (π΄ βΎs π·) |
Ref | Expression |
---|---|
scmatsgrp1 | β’ ((π β Fin β§ π β Ring) β π β (SubGrpβπΆ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scmatid.a | . . . . 5 β’ π΄ = (π Mat π ) | |
2 | scmatid.b | . . . . 5 β’ π΅ = (Baseβπ΄) | |
3 | scmatid.e | . . . . 5 β’ πΈ = (Baseβπ ) | |
4 | scmatid.0 | . . . . 5 β’ 0 = (0gβπ ) | |
5 | scmatid.s | . . . . 5 β’ π = (π ScMat π ) | |
6 | scmatsgrp1.d | . . . . 5 β’ π· = (π DMat π ) | |
7 | 1, 2, 3, 4, 5, 6 | scmatdmat 22008 | . . . 4 β’ ((π β Fin β§ π β Ring) β (π₯ β π β π₯ β π·)) |
8 | 7 | ssrdv 3987 | . . 3 β’ ((π β Fin β§ π β Ring) β π β π·) |
9 | 1, 2, 4, 6 | dmatsgrp 21992 | . . . . 5 β’ ((π β Ring β§ π β Fin) β π· β (SubGrpβπ΄)) |
10 | 9 | ancoms 459 | . . . 4 β’ ((π β Fin β§ π β Ring) β π· β (SubGrpβπ΄)) |
11 | scmatsgrp1.c | . . . . . 6 β’ πΆ = (π΄ βΎs π·) | |
12 | 11 | subgbas 19004 | . . . . 5 β’ (π· β (SubGrpβπ΄) β π· = (BaseβπΆ)) |
13 | 12 | eqcomd 2738 | . . . 4 β’ (π· β (SubGrpβπ΄) β (BaseβπΆ) = π·) |
14 | 10, 13 | syl 17 | . . 3 β’ ((π β Fin β§ π β Ring) β (BaseβπΆ) = π·) |
15 | 8, 14 | sseqtrrd 4022 | . 2 β’ ((π β Fin β§ π β Ring) β π β (BaseβπΆ)) |
16 | 1, 2, 3, 4, 5 | scmatid 22007 | . . 3 β’ ((π β Fin β§ π β Ring) β (1rβπ΄) β π) |
17 | 16 | ne0d 4334 | . 2 β’ ((π β Fin β§ π β Ring) β π β β ) |
18 | 10 | adantr 481 | . . . . 5 β’ (((π β Fin β§ π β Ring) β§ (π₯ β π β§ π¦ β π)) β π· β (SubGrpβπ΄)) |
19 | 7 | com12 32 | . . . . . . 7 β’ (π₯ β π β ((π β Fin β§ π β Ring) β π₯ β π·)) |
20 | 19 | adantr 481 | . . . . . 6 β’ ((π₯ β π β§ π¦ β π) β ((π β Fin β§ π β Ring) β π₯ β π·)) |
21 | 20 | impcom 408 | . . . . 5 β’ (((π β Fin β§ π β Ring) β§ (π₯ β π β§ π¦ β π)) β π₯ β π·) |
22 | 1, 2, 3, 4, 5, 6 | scmatdmat 22008 | . . . . . . 7 β’ ((π β Fin β§ π β Ring) β (π¦ β π β π¦ β π·)) |
23 | 22 | a1d 25 | . . . . . 6 β’ ((π β Fin β§ π β Ring) β (π₯ β π β (π¦ β π β π¦ β π·))) |
24 | 23 | imp32 419 | . . . . 5 β’ (((π β Fin β§ π β Ring) β§ (π₯ β π β§ π¦ β π)) β π¦ β π·) |
25 | eqid 2732 | . . . . . . 7 β’ (-gβπ΄) = (-gβπ΄) | |
26 | eqid 2732 | . . . . . . 7 β’ (-gβπΆ) = (-gβπΆ) | |
27 | 25, 11, 26 | subgsub 19012 | . . . . . 6 β’ ((π· β (SubGrpβπ΄) β§ π₯ β π· β§ π¦ β π·) β (π₯(-gβπ΄)π¦) = (π₯(-gβπΆ)π¦)) |
28 | 27 | eqcomd 2738 | . . . . 5 β’ ((π· β (SubGrpβπ΄) β§ π₯ β π· β§ π¦ β π·) β (π₯(-gβπΆ)π¦) = (π₯(-gβπ΄)π¦)) |
29 | 18, 21, 24, 28 | syl3anc 1371 | . . . 4 β’ (((π β Fin β§ π β Ring) β§ (π₯ β π β§ π¦ β π)) β (π₯(-gβπΆ)π¦) = (π₯(-gβπ΄)π¦)) |
30 | 1, 2, 3, 4, 5 | scmatsubcl 22010 | . . . 4 β’ (((π β Fin β§ π β Ring) β§ (π₯ β π β§ π¦ β π)) β (π₯(-gβπ΄)π¦) β π) |
31 | 29, 30 | eqeltrd 2833 | . . 3 β’ (((π β Fin β§ π β Ring) β§ (π₯ β π β§ π¦ β π)) β (π₯(-gβπΆ)π¦) β π) |
32 | 31 | ralrimivva 3200 | . 2 β’ ((π β Fin β§ π β Ring) β βπ₯ β π βπ¦ β π (π₯(-gβπΆ)π¦) β π) |
33 | 1, 2, 4, 6 | dmatsrng 21994 | . . . . 5 β’ ((π β Ring β§ π β Fin) β π· β (SubRingβπ΄)) |
34 | 33 | ancoms 459 | . . . 4 β’ ((π β Fin β§ π β Ring) β π· β (SubRingβπ΄)) |
35 | 11 | subrgring 20358 | . . . 4 β’ (π· β (SubRingβπ΄) β πΆ β Ring) |
36 | 34, 35 | syl 17 | . . 3 β’ ((π β Fin β§ π β Ring) β πΆ β Ring) |
37 | ringgrp 20054 | . . 3 β’ (πΆ β Ring β πΆ β Grp) | |
38 | eqid 2732 | . . . 4 β’ (BaseβπΆ) = (BaseβπΆ) | |
39 | 38, 26 | issubg4 19019 | . . 3 β’ (πΆ β Grp β (π β (SubGrpβπΆ) β (π β (BaseβπΆ) β§ π β β β§ βπ₯ β π βπ¦ β π (π₯(-gβπΆ)π¦) β π))) |
40 | 36, 37, 39 | 3syl 18 | . 2 β’ ((π β Fin β§ π β Ring) β (π β (SubGrpβπΆ) β (π β (BaseβπΆ) β§ π β β β§ βπ₯ β π βπ¦ β π (π₯(-gβπΆ)π¦) β π))) |
41 | 15, 17, 32, 40 | mpbir3and 1342 | 1 β’ ((π β Fin β§ π β Ring) β π β (SubGrpβπΆ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β wne 2940 βwral 3061 β wss 3947 β c0 4321 βcfv 6540 (class class class)co 7405 Fincfn 8935 Basecbs 17140 βΎs cress 17169 0gc0g 17381 Grpcgrp 18815 -gcsg 18817 SubGrpcsubg 18994 1rcur 19998 Ringcrg 20049 SubRingcsubrg 20351 Mat cmat 21898 DMat cdmat 21981 ScMat cscmat 21982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-ot 4636 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-sup 9433 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-fzo 13624 df-seq 13963 df-hash 14287 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-hom 17217 df-cco 17218 df-0g 17383 df-gsum 17384 df-prds 17389 df-pws 17391 df-mre 17526 df-mrc 17527 df-acs 17529 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-mhm 18667 df-submnd 18668 df-grp 18818 df-minusg 18819 df-sbg 18820 df-mulg 18945 df-subg 18997 df-ghm 19084 df-cntz 19175 df-cmn 19644 df-abl 19645 df-mgp 19982 df-ur 19999 df-ring 20051 df-subrg 20353 df-lmod 20465 df-lss 20535 df-sra 20777 df-rgmod 20778 df-dsmm 21278 df-frlm 21293 df-mamu 21877 df-mat 21899 df-dmat 21983 df-scmat 21984 |
This theorem is referenced by: scmatsrng1 22016 |
Copyright terms: Public domain | W3C validator |