![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > scmatsgrp1 | Structured version Visualization version GIF version |
Description: The set of scalar matrices is a subgroup of the group/ring of diagonal matrices. (Contributed by AV, 21-Aug-2019.) |
Ref | Expression |
---|---|
scmatid.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
scmatid.b | ⊢ 𝐵 = (Base‘𝐴) |
scmatid.e | ⊢ 𝐸 = (Base‘𝑅) |
scmatid.0 | ⊢ 0 = (0g‘𝑅) |
scmatid.s | ⊢ 𝑆 = (𝑁 ScMat 𝑅) |
scmatsgrp1.d | ⊢ 𝐷 = (𝑁 DMat 𝑅) |
scmatsgrp1.c | ⊢ 𝐶 = (𝐴 ↾s 𝐷) |
Ref | Expression |
---|---|
scmatsgrp1 | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubGrp‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scmatid.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | scmatid.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
3 | scmatid.e | . . . . 5 ⊢ 𝐸 = (Base‘𝑅) | |
4 | scmatid.0 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
5 | scmatid.s | . . . . 5 ⊢ 𝑆 = (𝑁 ScMat 𝑅) | |
6 | scmatsgrp1.d | . . . . 5 ⊢ 𝐷 = (𝑁 DMat 𝑅) | |
7 | 1, 2, 3, 4, 5, 6 | scmatdmat 20644 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥 ∈ 𝑆 → 𝑥 ∈ 𝐷)) |
8 | 7 | ssrdv 3802 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ⊆ 𝐷) |
9 | 1, 2, 4, 6 | dmatsgrp 20628 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝐷 ∈ (SubGrp‘𝐴)) |
10 | 9 | ancoms 451 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐷 ∈ (SubGrp‘𝐴)) |
11 | scmatsgrp1.c | . . . . . 6 ⊢ 𝐶 = (𝐴 ↾s 𝐷) | |
12 | 11 | subgbas 17908 | . . . . 5 ⊢ (𝐷 ∈ (SubGrp‘𝐴) → 𝐷 = (Base‘𝐶)) |
13 | 12 | eqcomd 2803 | . . . 4 ⊢ (𝐷 ∈ (SubGrp‘𝐴) → (Base‘𝐶) = 𝐷) |
14 | 10, 13 | syl 17 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝐶) = 𝐷) |
15 | 8, 14 | sseqtr4d 3836 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ⊆ (Base‘𝐶)) |
16 | 1, 2, 3, 4, 5 | scmatid 20643 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) ∈ 𝑆) |
17 | 16 | ne0d 4120 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ≠ ∅) |
18 | 10 | adantr 473 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝐷 ∈ (SubGrp‘𝐴)) |
19 | 7 | com12 32 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑆 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑥 ∈ 𝐷)) |
20 | 19 | adantr 473 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑥 ∈ 𝐷)) |
21 | 20 | impcom 397 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑥 ∈ 𝐷) |
22 | 1, 2, 3, 4, 5, 6 | scmatdmat 20644 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦 ∈ 𝑆 → 𝑦 ∈ 𝐷)) |
23 | 22 | a1d 25 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥 ∈ 𝑆 → (𝑦 ∈ 𝑆 → 𝑦 ∈ 𝐷))) |
24 | 23 | imp32 410 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑦 ∈ 𝐷) |
25 | eqid 2797 | . . . . . . 7 ⊢ (-g‘𝐴) = (-g‘𝐴) | |
26 | eqid 2797 | . . . . . . 7 ⊢ (-g‘𝐶) = (-g‘𝐶) | |
27 | 25, 11, 26 | subgsub 17916 | . . . . . 6 ⊢ ((𝐷 ∈ (SubGrp‘𝐴) ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥(-g‘𝐴)𝑦) = (𝑥(-g‘𝐶)𝑦)) |
28 | 27 | eqcomd 2803 | . . . . 5 ⊢ ((𝐷 ∈ (SubGrp‘𝐴) ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥(-g‘𝐶)𝑦) = (𝑥(-g‘𝐴)𝑦)) |
29 | 18, 21, 24, 28 | syl3anc 1491 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(-g‘𝐶)𝑦) = (𝑥(-g‘𝐴)𝑦)) |
30 | 1, 2, 3, 4, 5 | scmatsubcl 20646 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(-g‘𝐴)𝑦) ∈ 𝑆) |
31 | 29, 30 | eqeltrd 2876 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(-g‘𝐶)𝑦) ∈ 𝑆) |
32 | 31 | ralrimivva 3150 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(-g‘𝐶)𝑦) ∈ 𝑆) |
33 | 1, 2, 4, 6 | dmatsrng 20630 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝐷 ∈ (SubRing‘𝐴)) |
34 | 33 | ancoms 451 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐷 ∈ (SubRing‘𝐴)) |
35 | 11 | subrgring 19098 | . . . 4 ⊢ (𝐷 ∈ (SubRing‘𝐴) → 𝐶 ∈ Ring) |
36 | 34, 35 | syl 17 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring) |
37 | ringgrp 18865 | . . 3 ⊢ (𝐶 ∈ Ring → 𝐶 ∈ Grp) | |
38 | eqid 2797 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
39 | 38, 26 | issubg4 17923 | . . 3 ⊢ (𝐶 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐶) ↔ (𝑆 ⊆ (Base‘𝐶) ∧ 𝑆 ≠ ∅ ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(-g‘𝐶)𝑦) ∈ 𝑆))) |
40 | 36, 37, 39 | 3syl 18 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑆 ∈ (SubGrp‘𝐶) ↔ (𝑆 ⊆ (Base‘𝐶) ∧ 𝑆 ≠ ∅ ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(-g‘𝐶)𝑦) ∈ 𝑆))) |
41 | 15, 17, 32, 40 | mpbir3and 1443 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubGrp‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ≠ wne 2969 ∀wral 3087 ⊆ wss 3767 ∅c0 4113 ‘cfv 6099 (class class class)co 6876 Fincfn 8193 Basecbs 16181 ↾s cress 16182 0gc0g 16412 Grpcgrp 17735 -gcsg 17737 SubGrpcsubg 17898 1rcur 18814 Ringcrg 18860 SubRingcsubrg 19091 Mat cmat 20535 DMat cdmat 20617 ScMat cscmat 20618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-inf2 8786 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-ot 4375 df-uni 4627 df-int 4666 df-iun 4710 df-iin 4711 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-se 5270 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-isom 6108 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-of 7129 df-om 7298 df-1st 7399 df-2nd 7400 df-supp 7531 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-1o 7797 df-oadd 7801 df-er 7980 df-map 8095 df-ixp 8147 df-en 8194 df-dom 8195 df-sdom 8196 df-fin 8197 df-fsupp 8516 df-sup 8588 df-oi 8655 df-card 9049 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-nn 11311 df-2 11372 df-3 11373 df-4 11374 df-5 11375 df-6 11376 df-7 11377 df-8 11378 df-9 11379 df-n0 11577 df-z 11663 df-dec 11780 df-uz 11927 df-fz 12577 df-fzo 12717 df-seq 13052 df-hash 13367 df-struct 16183 df-ndx 16184 df-slot 16185 df-base 16187 df-sets 16188 df-ress 16189 df-plusg 16277 df-mulr 16278 df-sca 16280 df-vsca 16281 df-ip 16282 df-tset 16283 df-ple 16284 df-ds 16286 df-hom 16288 df-cco 16289 df-0g 16414 df-gsum 16415 df-prds 16420 df-pws 16422 df-mre 16558 df-mrc 16559 df-acs 16561 df-mgm 17554 df-sgrp 17596 df-mnd 17607 df-mhm 17647 df-submnd 17648 df-grp 17738 df-minusg 17739 df-sbg 17740 df-mulg 17854 df-subg 17901 df-ghm 17968 df-cntz 18059 df-cmn 18507 df-abl 18508 df-mgp 18803 df-ur 18815 df-ring 18862 df-subrg 19093 df-lmod 19180 df-lss 19248 df-sra 19492 df-rgmod 19493 df-dsmm 20398 df-frlm 20413 df-mamu 20512 df-mat 20536 df-dmat 20619 df-scmat 20620 |
This theorem is referenced by: scmatsrng1 20652 |
Copyright terms: Public domain | W3C validator |