MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatsgrp1 Structured version   Visualization version   GIF version

Theorem scmatsgrp1 21871
Description: The set of scalar matrices is a subgroup of the group/ring of diagonal matrices. (Contributed by AV, 21-Aug-2019.)
Hypotheses
Ref Expression
scmatid.a 𝐴 = (𝑁 Mat 𝑅)
scmatid.b 𝐵 = (Base‘𝐴)
scmatid.e 𝐸 = (Base‘𝑅)
scmatid.0 0 = (0g𝑅)
scmatid.s 𝑆 = (𝑁 ScMat 𝑅)
scmatsgrp1.d 𝐷 = (𝑁 DMat 𝑅)
scmatsgrp1.c 𝐶 = (𝐴s 𝐷)
Assertion
Ref Expression
scmatsgrp1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubGrp‘𝐶))

Proof of Theorem scmatsgrp1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scmatid.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
2 scmatid.b . . . . 5 𝐵 = (Base‘𝐴)
3 scmatid.e . . . . 5 𝐸 = (Base‘𝑅)
4 scmatid.0 . . . . 5 0 = (0g𝑅)
5 scmatid.s . . . . 5 𝑆 = (𝑁 ScMat 𝑅)
6 scmatsgrp1.d . . . . 5 𝐷 = (𝑁 DMat 𝑅)
71, 2, 3, 4, 5, 6scmatdmat 21864 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥𝑆𝑥𝐷))
87ssrdv 3950 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆𝐷)
91, 2, 4, 6dmatsgrp 21848 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝐷 ∈ (SubGrp‘𝐴))
109ancoms 459 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐷 ∈ (SubGrp‘𝐴))
11 scmatsgrp1.c . . . . . 6 𝐶 = (𝐴s 𝐷)
1211subgbas 18932 . . . . 5 (𝐷 ∈ (SubGrp‘𝐴) → 𝐷 = (Base‘𝐶))
1312eqcomd 2742 . . . 4 (𝐷 ∈ (SubGrp‘𝐴) → (Base‘𝐶) = 𝐷)
1410, 13syl 17 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝐶) = 𝐷)
158, 14sseqtrrd 3985 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ⊆ (Base‘𝐶))
161, 2, 3, 4, 5scmatid 21863 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) ∈ 𝑆)
1716ne0d 4295 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ≠ ∅)
1810adantr 481 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → 𝐷 ∈ (SubGrp‘𝐴))
197com12 32 . . . . . . 7 (𝑥𝑆 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑥𝐷))
2019adantr 481 . . . . . 6 ((𝑥𝑆𝑦𝑆) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑥𝐷))
2120impcom 408 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → 𝑥𝐷)
221, 2, 3, 4, 5, 6scmatdmat 21864 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦𝑆𝑦𝐷))
2322a1d 25 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥𝑆 → (𝑦𝑆𝑦𝐷)))
2423imp32 419 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → 𝑦𝐷)
25 eqid 2736 . . . . . . 7 (-g𝐴) = (-g𝐴)
26 eqid 2736 . . . . . . 7 (-g𝐶) = (-g𝐶)
2725, 11, 26subgsub 18940 . . . . . 6 ((𝐷 ∈ (SubGrp‘𝐴) ∧ 𝑥𝐷𝑦𝐷) → (𝑥(-g𝐴)𝑦) = (𝑥(-g𝐶)𝑦))
2827eqcomd 2742 . . . . 5 ((𝐷 ∈ (SubGrp‘𝐴) ∧ 𝑥𝐷𝑦𝐷) → (𝑥(-g𝐶)𝑦) = (𝑥(-g𝐴)𝑦))
2918, 21, 24, 28syl3anc 1371 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(-g𝐶)𝑦) = (𝑥(-g𝐴)𝑦))
301, 2, 3, 4, 5scmatsubcl 21866 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(-g𝐴)𝑦) ∈ 𝑆)
3129, 30eqeltrd 2838 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(-g𝐶)𝑦) ∈ 𝑆)
3231ralrimivva 3197 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥𝑆𝑦𝑆 (𝑥(-g𝐶)𝑦) ∈ 𝑆)
331, 2, 4, 6dmatsrng 21850 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝐷 ∈ (SubRing‘𝐴))
3433ancoms 459 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐷 ∈ (SubRing‘𝐴))
3511subrgring 20225 . . . 4 (𝐷 ∈ (SubRing‘𝐴) → 𝐶 ∈ Ring)
3634, 35syl 17 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
37 ringgrp 19969 . . 3 (𝐶 ∈ Ring → 𝐶 ∈ Grp)
38 eqid 2736 . . . 4 (Base‘𝐶) = (Base‘𝐶)
3938, 26issubg4 18947 . . 3 (𝐶 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐶) ↔ (𝑆 ⊆ (Base‘𝐶) ∧ 𝑆 ≠ ∅ ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(-g𝐶)𝑦) ∈ 𝑆)))
4036, 37, 393syl 18 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑆 ∈ (SubGrp‘𝐶) ↔ (𝑆 ⊆ (Base‘𝐶) ∧ 𝑆 ≠ ∅ ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(-g𝐶)𝑦) ∈ 𝑆)))
4115, 17, 32, 40mpbir3and 1342 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubGrp‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wss 3910  c0 4282  cfv 6496  (class class class)co 7357  Fincfn 8883  Basecbs 17083  s cress 17112  0gc0g 17321  Grpcgrp 18748  -gcsg 18750  SubGrpcsubg 18922  1rcur 19913  Ringcrg 19964  SubRingcsubrg 20218   Mat cmat 21754   DMat cdmat 21837   ScMat cscmat 21838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-ot 4595  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-hom 17157  df-cco 17158  df-0g 17323  df-gsum 17324  df-prds 17329  df-pws 17331  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-subrg 20220  df-lmod 20324  df-lss 20393  df-sra 20633  df-rgmod 20634  df-dsmm 21138  df-frlm 21153  df-mamu 21733  df-mat 21755  df-dmat 21839  df-scmat 21840
This theorem is referenced by:  scmatsrng1  21872
  Copyright terms: Public domain W3C validator