| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > evlsscaval | Structured version Visualization version GIF version | ||
| Description: Polynomial evaluation builder for a scalar. Compare evl1scad 22255. Note that scalar multiplication by 𝑋 is the same as vector multiplication by (𝐴‘𝑋) by asclmul1 21828. (Contributed by SN, 27-Jul-2024.) |
| Ref | Expression |
|---|---|
| evlsscaval.q | ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) |
| evlsscaval.p | ⊢ 𝑃 = (𝐼 mPoly 𝑈) |
| evlsscaval.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| evlsscaval.k | ⊢ 𝐾 = (Base‘𝑆) |
| evlsscaval.b | ⊢ 𝐵 = (Base‘𝑃) |
| evlsscaval.a | ⊢ 𝐴 = (algSc‘𝑃) |
| evlsscaval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| evlsscaval.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| evlsscaval.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| evlsscaval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑅) |
| evlsscaval.l | ⊢ (𝜑 → 𝐿 ∈ (𝐾 ↑m 𝐼)) |
| Ref | Expression |
|---|---|
| evlsscaval | ⊢ (𝜑 → ((𝐴‘𝑋) ∈ 𝐵 ∧ ((𝑄‘(𝐴‘𝑋))‘𝐿) = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsscaval.p | . . . 4 ⊢ 𝑃 = (𝐼 mPoly 𝑈) | |
| 2 | evlsscaval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 3 | eqid 2729 | . . . 4 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 4 | evlsscaval.a | . . . 4 ⊢ 𝐴 = (algSc‘𝑃) | |
| 5 | evlsscaval.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 6 | evlsscaval.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
| 7 | evlsscaval.u | . . . . . 6 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
| 8 | 7 | subrgring 20494 | . . . . 5 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring) |
| 9 | 6, 8 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ Ring) |
| 10 | 1, 2, 3, 4, 5, 9 | mplasclf 22005 | . . 3 ⊢ (𝜑 → 𝐴:(Base‘𝑈)⟶𝐵) |
| 11 | evlsscaval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑅) | |
| 12 | 7 | subrgbas 20501 | . . . . 5 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 = (Base‘𝑈)) |
| 13 | 6, 12 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 = (Base‘𝑈)) |
| 14 | 11, 13 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑈)) |
| 15 | 10, 14 | ffvelcdmd 7039 | . 2 ⊢ (𝜑 → (𝐴‘𝑋) ∈ 𝐵) |
| 16 | evlsscaval.q | . . . . 5 ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) | |
| 17 | evlsscaval.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑆) | |
| 18 | evlsscaval.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 19 | 16, 1, 7, 17, 4, 5, 18, 6, 11 | evlssca 22029 | . . . 4 ⊢ (𝜑 → (𝑄‘(𝐴‘𝑋)) = ((𝐾 ↑m 𝐼) × {𝑋})) |
| 20 | 19 | fveq1d 6842 | . . 3 ⊢ (𝜑 → ((𝑄‘(𝐴‘𝑋))‘𝐿) = (((𝐾 ↑m 𝐼) × {𝑋})‘𝐿)) |
| 21 | evlsscaval.l | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (𝐾 ↑m 𝐼)) | |
| 22 | fvconst2g 7158 | . . . 4 ⊢ ((𝑋 ∈ 𝑅 ∧ 𝐿 ∈ (𝐾 ↑m 𝐼)) → (((𝐾 ↑m 𝐼) × {𝑋})‘𝐿) = 𝑋) | |
| 23 | 11, 21, 22 | syl2anc 584 | . . 3 ⊢ (𝜑 → (((𝐾 ↑m 𝐼) × {𝑋})‘𝐿) = 𝑋) |
| 24 | 20, 23 | eqtrd 2764 | . 2 ⊢ (𝜑 → ((𝑄‘(𝐴‘𝑋))‘𝐿) = 𝑋) |
| 25 | 15, 24 | jca 511 | 1 ⊢ (𝜑 → ((𝐴‘𝑋) ∈ 𝐵 ∧ ((𝑄‘(𝐴‘𝑋))‘𝐿) = 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4585 × cxp 5629 ‘cfv 6499 (class class class)co 7369 ↑m cmap 8776 Basecbs 17155 ↾s cress 17176 Ringcrg 20153 CRingccrg 20154 SubRingcsubrg 20489 algSccascl 21794 mPoly cmpl 21848 evalSub ces 22012 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-ofr 7634 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-fzo 13592 df-seq 13943 df-hash 14272 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-0g 17380 df-gsum 17381 df-prds 17386 df-pws 17388 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-mhm 18692 df-submnd 18693 df-grp 18850 df-minusg 18851 df-sbg 18852 df-mulg 18982 df-subg 19037 df-ghm 19127 df-cntz 19231 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-srg 20107 df-ring 20155 df-cring 20156 df-rhm 20392 df-subrng 20466 df-subrg 20490 df-lmod 20800 df-lss 20870 df-lsp 20910 df-assa 21795 df-asp 21796 df-ascl 21797 df-psr 21851 df-mvr 21852 df-mpl 21853 df-evls 22014 |
| This theorem is referenced by: evlsmaprhm 42551 |
| Copyright terms: Public domain | W3C validator |