![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > evlsscaval | Structured version Visualization version GIF version |
Description: Polynomial evaluation builder for a scalar. Compare evl1scad 22164. Note that scalar multiplication by 𝑋 is the same as vector multiplication by (𝐴‘𝑋) by asclmul1 21740. (Contributed by SN, 27-Jul-2024.) |
Ref | Expression |
---|---|
evlsscaval.q | ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) |
evlsscaval.p | ⊢ 𝑃 = (𝐼 mPoly 𝑈) |
evlsscaval.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
evlsscaval.k | ⊢ 𝐾 = (Base‘𝑆) |
evlsscaval.b | ⊢ 𝐵 = (Base‘𝑃) |
evlsscaval.a | ⊢ 𝐴 = (algSc‘𝑃) |
evlsscaval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
evlsscaval.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
evlsscaval.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
evlsscaval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑅) |
evlsscaval.l | ⊢ (𝜑 → 𝐿 ∈ (𝐾 ↑m 𝐼)) |
Ref | Expression |
---|---|
evlsscaval | ⊢ (𝜑 → ((𝐴‘𝑋) ∈ 𝐵 ∧ ((𝑄‘(𝐴‘𝑋))‘𝐿) = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evlsscaval.p | . . . 4 ⊢ 𝑃 = (𝐼 mPoly 𝑈) | |
2 | evlsscaval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
3 | eqid 2724 | . . . 4 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
4 | evlsscaval.a | . . . 4 ⊢ 𝐴 = (algSc‘𝑃) | |
5 | evlsscaval.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
6 | evlsscaval.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
7 | evlsscaval.u | . . . . . 6 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
8 | 7 | subrgring 20461 | . . . . 5 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring) |
9 | 6, 8 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ Ring) |
10 | 1, 2, 3, 4, 5, 9 | mplasclf 21927 | . . 3 ⊢ (𝜑 → 𝐴:(Base‘𝑈)⟶𝐵) |
11 | evlsscaval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑅) | |
12 | 7 | subrgbas 20468 | . . . . 5 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 = (Base‘𝑈)) |
13 | 6, 12 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 = (Base‘𝑈)) |
14 | 11, 13 | eleqtrd 2827 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑈)) |
15 | 10, 14 | ffvelcdmd 7077 | . 2 ⊢ (𝜑 → (𝐴‘𝑋) ∈ 𝐵) |
16 | evlsscaval.q | . . . . 5 ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) | |
17 | evlsscaval.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑆) | |
18 | evlsscaval.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
19 | 16, 1, 7, 17, 4, 5, 18, 6, 11 | evlssca 21953 | . . . 4 ⊢ (𝜑 → (𝑄‘(𝐴‘𝑋)) = ((𝐾 ↑m 𝐼) × {𝑋})) |
20 | 19 | fveq1d 6883 | . . 3 ⊢ (𝜑 → ((𝑄‘(𝐴‘𝑋))‘𝐿) = (((𝐾 ↑m 𝐼) × {𝑋})‘𝐿)) |
21 | evlsscaval.l | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (𝐾 ↑m 𝐼)) | |
22 | fvconst2g 7195 | . . . 4 ⊢ ((𝑋 ∈ 𝑅 ∧ 𝐿 ∈ (𝐾 ↑m 𝐼)) → (((𝐾 ↑m 𝐼) × {𝑋})‘𝐿) = 𝑋) | |
23 | 11, 21, 22 | syl2anc 583 | . . 3 ⊢ (𝜑 → (((𝐾 ↑m 𝐼) × {𝑋})‘𝐿) = 𝑋) |
24 | 20, 23 | eqtrd 2764 | . 2 ⊢ (𝜑 → ((𝑄‘(𝐴‘𝑋))‘𝐿) = 𝑋) |
25 | 15, 24 | jca 511 | 1 ⊢ (𝜑 → ((𝐴‘𝑋) ∈ 𝐵 ∧ ((𝑄‘(𝐴‘𝑋))‘𝐿) = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 {csn 4620 × cxp 5664 ‘cfv 6533 (class class class)co 7401 ↑m cmap 8815 Basecbs 17140 ↾s cress 17169 Ringcrg 20123 CRingccrg 20124 SubRingcsubrg 20454 algSccascl 21707 mPoly cmpl 21759 evalSub ces 21934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-ofr 7664 df-om 7849 df-1st 7968 df-2nd 7969 df-supp 8141 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8698 df-map 8817 df-pm 8818 df-ixp 8887 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-fsupp 9357 df-sup 9432 df-oi 9500 df-card 9929 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-fzo 13624 df-seq 13963 df-hash 14287 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-hom 17217 df-cco 17218 df-0g 17383 df-gsum 17384 df-prds 17389 df-pws 17391 df-mre 17526 df-mrc 17527 df-acs 17529 df-mgm 18560 df-sgrp 18639 df-mnd 18655 df-mhm 18700 df-submnd 18701 df-grp 18853 df-minusg 18854 df-sbg 18855 df-mulg 18983 df-subg 19035 df-ghm 19124 df-cntz 19218 df-cmn 19687 df-abl 19688 df-mgp 20025 df-rng 20043 df-ur 20072 df-srg 20077 df-ring 20125 df-cring 20126 df-rhm 20359 df-subrng 20431 df-subrg 20456 df-lmod 20693 df-lss 20764 df-lsp 20804 df-assa 21708 df-asp 21709 df-ascl 21710 df-psr 21762 df-mvr 21763 df-mpl 21764 df-evls 21936 |
This theorem is referenced by: evlsmaprhm 41597 |
Copyright terms: Public domain | W3C validator |