| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > vtscl | Structured version Visualization version GIF version | ||
| Description: Closure of the Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 14-Dec-2021.) |
| Ref | Expression |
|---|---|
| vtsval.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| vtsval.x | ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| vtsval.l | ⊢ (𝜑 → 𝐿:ℕ⟶ℂ) |
| Ref | Expression |
|---|---|
| vtscl | ⊢ (𝜑 → ((𝐿vts𝑁)‘𝑋) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtsval.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 2 | vtsval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℂ) | |
| 3 | vtsval.l | . . 3 ⊢ (𝜑 → 𝐿:ℕ⟶ℂ) | |
| 4 | 1, 2, 3 | vtsval 34722 | . 2 ⊢ (𝜑 → ((𝐿vts𝑁)‘𝑋) = Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋))))) |
| 5 | fzfid 13887 | . . 3 ⊢ (𝜑 → (1...𝑁) ∈ Fin) | |
| 6 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ (1...𝑁)) → 𝐿:ℕ⟶ℂ) |
| 7 | fz1ssnn 13462 | . . . . . . 7 ⊢ (1...𝑁) ⊆ ℕ | |
| 8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (1...𝑁) ⊆ ℕ) |
| 9 | 8 | sselda 3930 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ (1...𝑁)) → 𝑎 ∈ ℕ) |
| 10 | 6, 9 | ffvelcdmd 7027 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (1...𝑁)) → (𝐿‘𝑎) ∈ ℂ) |
| 11 | ax-icn 11076 | . . . . . . . 8 ⊢ i ∈ ℂ | |
| 12 | 2cn 12211 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
| 13 | picn 26414 | . . . . . . . . 9 ⊢ π ∈ ℂ | |
| 14 | 12, 13 | mulcli 11130 | . . . . . . . 8 ⊢ (2 · π) ∈ ℂ |
| 15 | 11, 14 | mulcli 11130 | . . . . . . 7 ⊢ (i · (2 · π)) ∈ ℂ |
| 16 | 15 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ (1...𝑁)) → (i · (2 · π)) ∈ ℂ) |
| 17 | 9 | nncnd 12152 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ (1...𝑁)) → 𝑎 ∈ ℂ) |
| 18 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ (1...𝑁)) → 𝑋 ∈ ℂ) |
| 19 | 17, 18 | mulcld 11143 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ (1...𝑁)) → (𝑎 · 𝑋) ∈ ℂ) |
| 20 | 16, 19 | mulcld 11143 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ (1...𝑁)) → ((i · (2 · π)) · (𝑎 · 𝑋)) ∈ ℂ) |
| 21 | 20 | efcld 15997 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (1...𝑁)) → (exp‘((i · (2 · π)) · (𝑎 · 𝑋))) ∈ ℂ) |
| 22 | 10, 21 | mulcld 11143 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (1...𝑁)) → ((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))) ∈ ℂ) |
| 23 | 5, 22 | fsumcl 15647 | . 2 ⊢ (𝜑 → Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))) ∈ ℂ) |
| 24 | 4, 23 | eqeltrd 2833 | 1 ⊢ (𝜑 → ((𝐿vts𝑁)‘𝑋) ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ⊆ wss 3898 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 ℂcc 11015 1c1 11018 ici 11019 · cmul 11022 ℕcn 12136 2c2 12191 ℕ0cn0 12392 ...cfz 13414 Σcsu 15600 expce 15975 πcpi 15980 vtscvts 34720 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9542 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 ax-addf 11096 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-pm 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9257 df-fi 9306 df-sup 9337 df-inf 9338 df-oi 9407 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-q 12853 df-rp 12897 df-xneg 13017 df-xadd 13018 df-xmul 13019 df-ioo 13256 df-ioc 13257 df-ico 13258 df-icc 13259 df-fz 13415 df-fzo 13562 df-fl 13703 df-seq 13916 df-exp 13976 df-fac 14188 df-bc 14217 df-hash 14245 df-shft 14981 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-limsup 15385 df-clim 15402 df-rlim 15403 df-sum 15601 df-ef 15981 df-sin 15983 df-cos 15984 df-pi 15986 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-starv 17183 df-sca 17184 df-vsca 17185 df-ip 17186 df-tset 17187 df-ple 17188 df-ds 17190 df-unif 17191 df-hom 17192 df-cco 17193 df-rest 17333 df-topn 17334 df-0g 17352 df-gsum 17353 df-topgen 17354 df-pt 17355 df-prds 17358 df-xrs 17414 df-qtop 17419 df-imas 17420 df-xps 17422 df-mre 17496 df-mrc 17497 df-acs 17499 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-submnd 18700 df-mulg 18989 df-cntz 19237 df-cmn 19702 df-psmet 21292 df-xmet 21293 df-met 21294 df-bl 21295 df-mopn 21296 df-fbas 21297 df-fg 21298 df-cnfld 21301 df-top 22829 df-topon 22846 df-topsp 22868 df-bases 22881 df-cld 22954 df-ntr 22955 df-cls 22956 df-nei 23033 df-lp 23071 df-perf 23072 df-cn 23162 df-cnp 23163 df-haus 23250 df-tx 23497 df-hmeo 23690 df-fil 23781 df-fm 23873 df-flim 23874 df-flf 23875 df-xms 24255 df-ms 24256 df-tms 24257 df-cncf 24818 df-limc 25814 df-dv 25815 df-vts 34721 |
| This theorem is referenced by: circlemethnat 34726 circlevma 34727 circlemethhgt 34728 |
| Copyright terms: Public domain | W3C validator |