MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1pthon2ve Structured version   Visualization version   GIF version

Theorem 1pthon2ve 30116
Description: For each pair of adjacent vertices there is a path of length 1 from one vertex to the other in a hypergraph. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 22-Jan-2021.) (Proof shortened by AV, 15-Feb-2021.)
Hypotheses
Ref Expression
1pthon2v.v 𝑉 = (Vtx‘𝐺)
1pthon2v.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
1pthon2ve ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ {𝐴, 𝐵} ∈ 𝐸) → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝)
Distinct variable groups:   𝐴,𝑓,𝑝   𝐵,𝑓,𝑝   𝑓,𝐺,𝑝
Allowed substitution hints:   𝐸(𝑓,𝑝)   𝑉(𝑓,𝑝)

Proof of Theorem 1pthon2ve
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 ({𝐴, 𝐵} ∈ 𝐸 → {𝐴, 𝐵} ∈ 𝐸)
2 sseq2 3964 . . . 4 (𝑒 = {𝐴, 𝐵} → ({𝐴, 𝐵} ⊆ 𝑒 ↔ {𝐴, 𝐵} ⊆ {𝐴, 𝐵}))
32adantl 481 . . 3 (({𝐴, 𝐵} ∈ 𝐸𝑒 = {𝐴, 𝐵}) → ({𝐴, 𝐵} ⊆ 𝑒 ↔ {𝐴, 𝐵} ⊆ {𝐴, 𝐵}))
4 ssidd 3961 . . 3 ({𝐴, 𝐵} ∈ 𝐸 → {𝐴, 𝐵} ⊆ {𝐴, 𝐵})
51, 3, 4rspcedvd 3581 . 2 ({𝐴, 𝐵} ∈ 𝐸 → ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒)
6 1pthon2v.v . . 3 𝑉 = (Vtx‘𝐺)
7 1pthon2v.e . . 3 𝐸 = (Edg‘𝐺)
86, 71pthon2v 30115 . 2 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒) → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝)
95, 8syl3an3 1165 1 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ {𝐴, 𝐵} ∈ 𝐸) → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wrex 3053  wss 3905  {cpr 4581   class class class wbr 5095  cfv 6486  (class class class)co 7353  Vtxcvtx 28959  Edgcedg 29010  UHGraphcuhgr 29019  PathsOncpthson 29675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-hash 14256  df-word 14439  df-concat 14496  df-s1 14521  df-s2 14773  df-edg 29011  df-uhgr 29021  df-wlks 29563  df-wlkson 29564  df-trls 29654  df-trlson 29655  df-pths 29677  df-pthson 29679
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator