| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rppwr | GIF version | ||
| Description: If 𝐴 and 𝐵 are relatively prime, then so are 𝐴↑𝑁 and 𝐵↑𝑁. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| rppwr | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → ((𝐴↑𝑁) gcd (𝐵↑𝑁)) = 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1002 | . . . 4 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → 𝐴 ∈ ℕ) | |
| 2 | simpl2 1003 | . . . . 5 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → 𝐵 ∈ ℕ) | |
| 3 | simpl3 1004 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → 𝑁 ∈ ℕ) | |
| 4 | 3 | nnnn0d 9302 | . . . . 5 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → 𝑁 ∈ ℕ0) |
| 5 | 2, 4 | nnexpcld 10787 | . . . 4 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐵↑𝑁) ∈ ℕ) |
| 6 | 1, 5, 3 | 3jca 1179 | . . 3 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 ∈ ℕ ∧ (𝐵↑𝑁) ∈ ℕ ∧ 𝑁 ∈ ℕ)) |
| 7 | 1 | nnzd 9447 | . . . . 5 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → 𝐴 ∈ ℤ) |
| 8 | 5 | nnzd 9447 | . . . . 5 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐵↑𝑁) ∈ ℤ) |
| 9 | gcdcom 12140 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ (𝐵↑𝑁) ∈ ℤ) → (𝐴 gcd (𝐵↑𝑁)) = ((𝐵↑𝑁) gcd 𝐴)) | |
| 10 | 7, 8, 9 | syl2anc 411 | . . . 4 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 gcd (𝐵↑𝑁)) = ((𝐵↑𝑁) gcd 𝐴)) |
| 11 | 2, 1, 3 | 3jca 1179 | . . . . 5 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ)) |
| 12 | nnz 9345 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℤ) | |
| 13 | 12 | 3ad2ant1 1020 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℤ) |
| 14 | nnz 9345 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℤ) | |
| 15 | 14 | 3ad2ant2 1021 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐵 ∈ ℤ) |
| 16 | gcdcom 12140 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴)) | |
| 17 | 13, 15, 16 | syl2anc 411 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴)) |
| 18 | 17 | eqeq1d 2205 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 ↔ (𝐵 gcd 𝐴) = 1)) |
| 19 | 18 | biimpa 296 | . . . . 5 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐵 gcd 𝐴) = 1) |
| 20 | rplpwr 12194 | . . . . 5 ⊢ ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐵 gcd 𝐴) = 1 → ((𝐵↑𝑁) gcd 𝐴) = 1)) | |
| 21 | 11, 19, 20 | sylc 62 | . . . 4 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐵↑𝑁) gcd 𝐴) = 1) |
| 22 | 10, 21 | eqtrd 2229 | . . 3 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 gcd (𝐵↑𝑁)) = 1) |
| 23 | rplpwr 12194 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵↑𝑁) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd (𝐵↑𝑁)) = 1 → ((𝐴↑𝑁) gcd (𝐵↑𝑁)) = 1)) | |
| 24 | 6, 22, 23 | sylc 62 | . 2 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴↑𝑁) gcd (𝐵↑𝑁)) = 1) |
| 25 | 24 | ex 115 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → ((𝐴↑𝑁) gcd (𝐵↑𝑁)) = 1)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 (class class class)co 5922 1c1 7880 ℕcn 8990 ℤcz 9326 ↑cexp 10630 gcd cgcd 12120 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-sup 7050 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-fz 10084 df-fzo 10218 df-fl 10360 df-mod 10415 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-dvds 11953 df-gcd 12121 |
| This theorem is referenced by: sqgcd 12196 |
| Copyright terms: Public domain | W3C validator |