Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem41 Structured version   Visualization version   GIF version

Theorem etransclem41 46231
Description: 𝑃 does not divide the P-1 -th derivative of 𝐹 applied to 0. This is the first part of case 2: proven in in [Juillerat] p. 13 . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem41.m (𝜑𝑀 ∈ ℕ0)
etransclem41.p (𝜑𝑃 ∈ ℙ)
etransclem41.mp (𝜑 → (!‘𝑀) < 𝑃)
etransclem41.f 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
Assertion
Ref Expression
etransclem41 (𝜑 → ¬ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))))
Distinct variable groups:   𝑗,𝑀,𝑥   𝑃,𝑗,𝑥   𝜑,𝑗,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑗)

Proof of Theorem etransclem41
Dummy variables 𝑐 𝑑 𝑘 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem41.mp . . . . . . 7 (𝜑 → (!‘𝑀) < 𝑃)
2 etransclem41.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ0)
32faccld 14320 . . . . . . . . 9 (𝜑 → (!‘𝑀) ∈ ℕ)
43nnred 12279 . . . . . . . 8 (𝜑 → (!‘𝑀) ∈ ℝ)
5 etransclem41.p . . . . . . . . . 10 (𝜑𝑃 ∈ ℙ)
6 prmnn 16708 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
75, 6syl 17 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
87nnred 12279 . . . . . . . 8 (𝜑𝑃 ∈ ℝ)
94, 8ltnled 11406 . . . . . . 7 (𝜑 → ((!‘𝑀) < 𝑃 ↔ ¬ 𝑃 ≤ (!‘𝑀)))
101, 9mpbid 232 . . . . . 6 (𝜑 → ¬ 𝑃 ≤ (!‘𝑀))
117nnzd 12638 . . . . . . . . 9 (𝜑𝑃 ∈ ℤ)
1211, 3jca 511 . . . . . . . 8 (𝜑 → (𝑃 ∈ ℤ ∧ (!‘𝑀) ∈ ℕ))
1312adantr 480 . . . . . . 7 ((𝜑𝑃 ∥ (!‘𝑀)) → (𝑃 ∈ ℤ ∧ (!‘𝑀) ∈ ℕ))
14 simpr 484 . . . . . . 7 ((𝜑𝑃 ∥ (!‘𝑀)) → 𝑃 ∥ (!‘𝑀))
15 dvdsle 16344 . . . . . . 7 ((𝑃 ∈ ℤ ∧ (!‘𝑀) ∈ ℕ) → (𝑃 ∥ (!‘𝑀) → 𝑃 ≤ (!‘𝑀)))
1613, 14, 15sylc 65 . . . . . 6 ((𝜑𝑃 ∥ (!‘𝑀)) → 𝑃 ≤ (!‘𝑀))
1710, 16mtand 816 . . . . 5 (𝜑 → ¬ 𝑃 ∥ (!‘𝑀))
18 fzfid 14011 . . . . . . . . . 10 (⊤ → (1...𝑀) ∈ Fin)
19 elfzelz 13561 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℤ)
2019znegcld 12722 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑀) → -𝑗 ∈ ℤ)
2120zcnd 12721 . . . . . . . . . . 11 (𝑗 ∈ (1...𝑀) → -𝑗 ∈ ℂ)
2221adantl 481 . . . . . . . . . 10 ((⊤ ∧ 𝑗 ∈ (1...𝑀)) → -𝑗 ∈ ℂ)
2318, 22fprodabs2 45551 . . . . . . . . 9 (⊤ → (abs‘∏𝑗 ∈ (1...𝑀)-𝑗) = ∏𝑗 ∈ (1...𝑀)(abs‘-𝑗))
2423mptru 1544 . . . . . . . 8 (abs‘∏𝑗 ∈ (1...𝑀)-𝑗) = ∏𝑗 ∈ (1...𝑀)(abs‘-𝑗)
2519zcnd 12721 . . . . . . . . . . 11 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℂ)
2625absnegd 15485 . . . . . . . . . 10 (𝑗 ∈ (1...𝑀) → (abs‘-𝑗) = (abs‘𝑗))
2719zred 12720 . . . . . . . . . . 11 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℝ)
28 0red 11262 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑀) → 0 ∈ ℝ)
29 1red 11260 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 1 ∈ ℝ)
30 0lt1 11783 . . . . . . . . . . . . . 14 0 < 1
3130a1i 11 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 0 < 1)
32 elfzle1 13564 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 1 ≤ 𝑗)
3328, 29, 27, 31, 32ltletrd 11419 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑀) → 0 < 𝑗)
3428, 27, 33ltled 11407 . . . . . . . . . . 11 (𝑗 ∈ (1...𝑀) → 0 ≤ 𝑗)
3527, 34absidd 15458 . . . . . . . . . 10 (𝑗 ∈ (1...𝑀) → (abs‘𝑗) = 𝑗)
3626, 35eqtrd 2775 . . . . . . . . 9 (𝑗 ∈ (1...𝑀) → (abs‘-𝑗) = 𝑗)
3736prodeq2i 15951 . . . . . . . 8 𝑗 ∈ (1...𝑀)(abs‘-𝑗) = ∏𝑗 ∈ (1...𝑀)𝑗
3824, 37eqtri 2763 . . . . . . 7 (abs‘∏𝑗 ∈ (1...𝑀)-𝑗) = ∏𝑗 ∈ (1...𝑀)𝑗
39 fprodfac 16006 . . . . . . . 8 (𝑀 ∈ ℕ0 → (!‘𝑀) = ∏𝑗 ∈ (1...𝑀)𝑗)
402, 39syl 17 . . . . . . 7 (𝜑 → (!‘𝑀) = ∏𝑗 ∈ (1...𝑀)𝑗)
4138, 40eqtr4id 2794 . . . . . 6 (𝜑 → (abs‘∏𝑗 ∈ (1...𝑀)-𝑗) = (!‘𝑀))
4241breq2d 5160 . . . . 5 (𝜑 → (𝑃 ∥ (abs‘∏𝑗 ∈ (1...𝑀)-𝑗) ↔ 𝑃 ∥ (!‘𝑀)))
4317, 42mtbird 325 . . . 4 (𝜑 → ¬ 𝑃 ∥ (abs‘∏𝑗 ∈ (1...𝑀)-𝑗))
44 fzfid 14011 . . . . . 6 (𝜑 → (1...𝑀) ∈ Fin)
4520adantl 481 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → -𝑗 ∈ ℤ)
4644, 45fprodzcl 15987 . . . . 5 (𝜑 → ∏𝑗 ∈ (1...𝑀)-𝑗 ∈ ℤ)
47 dvdsabsb 16310 . . . . 5 ((𝑃 ∈ ℤ ∧ ∏𝑗 ∈ (1...𝑀)-𝑗 ∈ ℤ) → (𝑃 ∥ ∏𝑗 ∈ (1...𝑀)-𝑗𝑃 ∥ (abs‘∏𝑗 ∈ (1...𝑀)-𝑗)))
4811, 46, 47syl2anc 584 . . . 4 (𝜑 → (𝑃 ∥ ∏𝑗 ∈ (1...𝑀)-𝑗𝑃 ∥ (abs‘∏𝑗 ∈ (1...𝑀)-𝑗)))
4943, 48mtbird 325 . . 3 (𝜑 → ¬ 𝑃 ∥ ∏𝑗 ∈ (1...𝑀)-𝑗)
50 prmdvdsexp 16749 . . . 4 ((𝑃 ∈ ℙ ∧ ∏𝑗 ∈ (1...𝑀)-𝑗 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑃 ∥ (∏𝑗 ∈ (1...𝑀)-𝑗𝑃) ↔ 𝑃 ∥ ∏𝑗 ∈ (1...𝑀)-𝑗))
515, 46, 7, 50syl3anc 1370 . . 3 (𝜑 → (𝑃 ∥ (∏𝑗 ∈ (1...𝑀)-𝑗𝑃) ↔ 𝑃 ∥ ∏𝑗 ∈ (1...𝑀)-𝑗))
5249, 51mtbird 325 . 2 (𝜑 → ¬ 𝑃 ∥ (∏𝑗 ∈ (1...𝑀)-𝑗𝑃))
53 etransclem41.f . . . . . 6 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
54 etransclem11 46201 . . . . . 6 (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
55 eqeq1 2739 . . . . . . . 8 (𝑘 = 𝑗 → (𝑘 = 0 ↔ 𝑗 = 0))
5655ifbid 4554 . . . . . . 7 (𝑘 = 𝑗 → if(𝑘 = 0, (𝑃 − 1), 0) = if(𝑗 = 0, (𝑃 − 1), 0))
5756cbvmptv 5261 . . . . . 6 (𝑘 ∈ (0...𝑀) ↦ if(𝑘 = 0, (𝑃 − 1), 0)) = (𝑗 ∈ (0...𝑀) ↦ if(𝑗 = 0, (𝑃 − 1), 0))
587, 2, 53, 54, 57etransclem35 46225 . . . . 5 (𝜑 → (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) = ((!‘(𝑃 − 1)) · (∏𝑗 ∈ (1...𝑀)-𝑗𝑃)))
5958oveq1d 7446 . . . 4 (𝜑 → ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))) = (((!‘(𝑃 − 1)) · (∏𝑗 ∈ (1...𝑀)-𝑗𝑃)) / (!‘(𝑃 − 1))))
6021adantl 481 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → -𝑗 ∈ ℂ)
6144, 60fprodcl 15985 . . . . . 6 (𝜑 → ∏𝑗 ∈ (1...𝑀)-𝑗 ∈ ℂ)
627nnnn0d 12585 . . . . . 6 (𝜑𝑃 ∈ ℕ0)
6361, 62expcld 14183 . . . . 5 (𝜑 → (∏𝑗 ∈ (1...𝑀)-𝑗𝑃) ∈ ℂ)
64 nnm1nn0 12565 . . . . . . . 8 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
657, 64syl 17 . . . . . . 7 (𝜑 → (𝑃 − 1) ∈ ℕ0)
6665faccld 14320 . . . . . 6 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
6766nncnd 12280 . . . . 5 (𝜑 → (!‘(𝑃 − 1)) ∈ ℂ)
6866nnne0d 12314 . . . . 5 (𝜑 → (!‘(𝑃 − 1)) ≠ 0)
6963, 67, 68divcan3d 12046 . . . 4 (𝜑 → (((!‘(𝑃 − 1)) · (∏𝑗 ∈ (1...𝑀)-𝑗𝑃)) / (!‘(𝑃 − 1))) = (∏𝑗 ∈ (1...𝑀)-𝑗𝑃))
7059, 69eqtrd 2775 . . 3 (𝜑 → ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))) = (∏𝑗 ∈ (1...𝑀)-𝑗𝑃))
7170breq2d 5160 . 2 (𝜑 → (𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))) ↔ 𝑃 ∥ (∏𝑗 ∈ (1...𝑀)-𝑗𝑃)))
7252, 71mtbird 325 1 (𝜑 → ¬ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wtru 1538  wcel 2106  {crab 3433  ifcif 4531   class class class wbr 5148  cmpt 5231  cfv 6563  (class class class)co 7431  m cmap 8865  cc 11151  cr 11152  0cc0 11153  1c1 11154   · cmul 11158   < clt 11293  cle 11294  cmin 11490  -cneg 11491   / cdiv 11918  cn 12264  0cn0 12524  cz 12611  ...cfz 13544  cexp 14099  !cfa 14309  abscabs 15270  Σcsu 15719  cprod 15936  cdvds 16287  cprime 16705   D𝑛 cdvn 25914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-prod 15937  df-dvds 16288  df-gcd 16529  df-prm 16706  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917  df-dvn 25918
This theorem is referenced by:  etransclem44  46234
  Copyright terms: Public domain W3C validator