Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem41 Structured version   Visualization version   GIF version

Theorem etransclem41 42774
 Description: 𝑃 does not divide the P-1 -th derivative of 𝐹 applied to 0. This is the first part of case 2: proven in in [Juillerat] p. 13 . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem41.m (𝜑𝑀 ∈ ℕ0)
etransclem41.p (𝜑𝑃 ∈ ℙ)
etransclem41.mp (𝜑 → (!‘𝑀) < 𝑃)
etransclem41.f 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
Assertion
Ref Expression
etransclem41 (𝜑 → ¬ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))))
Distinct variable groups:   𝑗,𝑀,𝑥   𝑃,𝑗,𝑥   𝜑,𝑗,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑗)

Proof of Theorem etransclem41
Dummy variables 𝑐 𝑑 𝑘 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem41.mp . . . . . . 7 (𝜑 → (!‘𝑀) < 𝑃)
2 etransclem41.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ0)
32faccld 13640 . . . . . . . . 9 (𝜑 → (!‘𝑀) ∈ ℕ)
43nnred 11640 . . . . . . . 8 (𝜑 → (!‘𝑀) ∈ ℝ)
5 etransclem41.p . . . . . . . . . 10 (𝜑𝑃 ∈ ℙ)
6 prmnn 16007 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
75, 6syl 17 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
87nnred 11640 . . . . . . . 8 (𝜑𝑃 ∈ ℝ)
94, 8ltnled 10774 . . . . . . 7 (𝜑 → ((!‘𝑀) < 𝑃 ↔ ¬ 𝑃 ≤ (!‘𝑀)))
101, 9mpbid 235 . . . . . 6 (𝜑 → ¬ 𝑃 ≤ (!‘𝑀))
117nnzd 12074 . . . . . . . . 9 (𝜑𝑃 ∈ ℤ)
1211, 3jca 515 . . . . . . . 8 (𝜑 → (𝑃 ∈ ℤ ∧ (!‘𝑀) ∈ ℕ))
1312adantr 484 . . . . . . 7 ((𝜑𝑃 ∥ (!‘𝑀)) → (𝑃 ∈ ℤ ∧ (!‘𝑀) ∈ ℕ))
14 simpr 488 . . . . . . 7 ((𝜑𝑃 ∥ (!‘𝑀)) → 𝑃 ∥ (!‘𝑀))
15 dvdsle 15651 . . . . . . 7 ((𝑃 ∈ ℤ ∧ (!‘𝑀) ∈ ℕ) → (𝑃 ∥ (!‘𝑀) → 𝑃 ≤ (!‘𝑀)))
1613, 14, 15sylc 65 . . . . . 6 ((𝜑𝑃 ∥ (!‘𝑀)) → 𝑃 ≤ (!‘𝑀))
1710, 16mtand 815 . . . . 5 (𝜑 → ¬ 𝑃 ∥ (!‘𝑀))
18 fprodfac 15318 . . . . . . . 8 (𝑀 ∈ ℕ0 → (!‘𝑀) = ∏𝑗 ∈ (1...𝑀)𝑗)
192, 18syl 17 . . . . . . 7 (𝜑 → (!‘𝑀) = ∏𝑗 ∈ (1...𝑀)𝑗)
20 fzfid 13336 . . . . . . . . . 10 (⊤ → (1...𝑀) ∈ Fin)
21 elfzelz 12902 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℤ)
2221znegcld 12077 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑀) → -𝑗 ∈ ℤ)
2322zcnd 12076 . . . . . . . . . . 11 (𝑗 ∈ (1...𝑀) → -𝑗 ∈ ℂ)
2423adantl 485 . . . . . . . . . 10 ((⊤ ∧ 𝑗 ∈ (1...𝑀)) → -𝑗 ∈ ℂ)
2520, 24fprodabs2 42094 . . . . . . . . 9 (⊤ → (abs‘∏𝑗 ∈ (1...𝑀)-𝑗) = ∏𝑗 ∈ (1...𝑀)(abs‘-𝑗))
2625mptru 1545 . . . . . . . 8 (abs‘∏𝑗 ∈ (1...𝑀)-𝑗) = ∏𝑗 ∈ (1...𝑀)(abs‘-𝑗)
2721zcnd 12076 . . . . . . . . . . 11 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℂ)
2827absnegd 14800 . . . . . . . . . 10 (𝑗 ∈ (1...𝑀) → (abs‘-𝑗) = (abs‘𝑗))
2921zred 12075 . . . . . . . . . . 11 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℝ)
30 0red 10631 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑀) → 0 ∈ ℝ)
31 1red 10629 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 1 ∈ ℝ)
32 0lt1 11149 . . . . . . . . . . . . . 14 0 < 1
3332a1i 11 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 0 < 1)
34 elfzle1 12905 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 1 ≤ 𝑗)
3530, 31, 29, 33, 34ltletrd 10787 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑀) → 0 < 𝑗)
3630, 29, 35ltled 10775 . . . . . . . . . . 11 (𝑗 ∈ (1...𝑀) → 0 ≤ 𝑗)
3729, 36absidd 14773 . . . . . . . . . 10 (𝑗 ∈ (1...𝑀) → (abs‘𝑗) = 𝑗)
3828, 37eqtrd 2859 . . . . . . . . 9 (𝑗 ∈ (1...𝑀) → (abs‘-𝑗) = 𝑗)
3938prodeq2i 15264 . . . . . . . 8 𝑗 ∈ (1...𝑀)(abs‘-𝑗) = ∏𝑗 ∈ (1...𝑀)𝑗
4026, 39eqtri 2847 . . . . . . 7 (abs‘∏𝑗 ∈ (1...𝑀)-𝑗) = ∏𝑗 ∈ (1...𝑀)𝑗
4119, 40syl6reqr 2878 . . . . . 6 (𝜑 → (abs‘∏𝑗 ∈ (1...𝑀)-𝑗) = (!‘𝑀))
4241breq2d 5061 . . . . 5 (𝜑 → (𝑃 ∥ (abs‘∏𝑗 ∈ (1...𝑀)-𝑗) ↔ 𝑃 ∥ (!‘𝑀)))
4317, 42mtbird 328 . . . 4 (𝜑 → ¬ 𝑃 ∥ (abs‘∏𝑗 ∈ (1...𝑀)-𝑗))
44 fzfid 13336 . . . . . 6 (𝜑 → (1...𝑀) ∈ Fin)
4522adantl 485 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → -𝑗 ∈ ℤ)
4644, 45fprodzcl 15299 . . . . 5 (𝜑 → ∏𝑗 ∈ (1...𝑀)-𝑗 ∈ ℤ)
47 dvdsabsb 15620 . . . . 5 ((𝑃 ∈ ℤ ∧ ∏𝑗 ∈ (1...𝑀)-𝑗 ∈ ℤ) → (𝑃 ∥ ∏𝑗 ∈ (1...𝑀)-𝑗𝑃 ∥ (abs‘∏𝑗 ∈ (1...𝑀)-𝑗)))
4811, 46, 47syl2anc 587 . . . 4 (𝜑 → (𝑃 ∥ ∏𝑗 ∈ (1...𝑀)-𝑗𝑃 ∥ (abs‘∏𝑗 ∈ (1...𝑀)-𝑗)))
4943, 48mtbird 328 . . 3 (𝜑 → ¬ 𝑃 ∥ ∏𝑗 ∈ (1...𝑀)-𝑗)
50 prmdvdsexp 16048 . . . 4 ((𝑃 ∈ ℙ ∧ ∏𝑗 ∈ (1...𝑀)-𝑗 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑃 ∥ (∏𝑗 ∈ (1...𝑀)-𝑗𝑃) ↔ 𝑃 ∥ ∏𝑗 ∈ (1...𝑀)-𝑗))
515, 46, 7, 50syl3anc 1368 . . 3 (𝜑 → (𝑃 ∥ (∏𝑗 ∈ (1...𝑀)-𝑗𝑃) ↔ 𝑃 ∥ ∏𝑗 ∈ (1...𝑀)-𝑗))
5249, 51mtbird 328 . 2 (𝜑 → ¬ 𝑃 ∥ (∏𝑗 ∈ (1...𝑀)-𝑗𝑃))
53 etransclem41.f . . . . . 6 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
54 etransclem11 42744 . . . . . 6 (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
55 eqeq1 2828 . . . . . . . 8 (𝑘 = 𝑗 → (𝑘 = 0 ↔ 𝑗 = 0))
5655ifbid 4470 . . . . . . 7 (𝑘 = 𝑗 → if(𝑘 = 0, (𝑃 − 1), 0) = if(𝑗 = 0, (𝑃 − 1), 0))
5756cbvmptv 5152 . . . . . 6 (𝑘 ∈ (0...𝑀) ↦ if(𝑘 = 0, (𝑃 − 1), 0)) = (𝑗 ∈ (0...𝑀) ↦ if(𝑗 = 0, (𝑃 − 1), 0))
587, 2, 53, 54, 57etransclem35 42768 . . . . 5 (𝜑 → (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) = ((!‘(𝑃 − 1)) · (∏𝑗 ∈ (1...𝑀)-𝑗𝑃)))
5958oveq1d 7155 . . . 4 (𝜑 → ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))) = (((!‘(𝑃 − 1)) · (∏𝑗 ∈ (1...𝑀)-𝑗𝑃)) / (!‘(𝑃 − 1))))
6023adantl 485 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → -𝑗 ∈ ℂ)
6144, 60fprodcl 15297 . . . . . 6 (𝜑 → ∏𝑗 ∈ (1...𝑀)-𝑗 ∈ ℂ)
627nnnn0d 11943 . . . . . 6 (𝜑𝑃 ∈ ℕ0)
6361, 62expcld 13506 . . . . 5 (𝜑 → (∏𝑗 ∈ (1...𝑀)-𝑗𝑃) ∈ ℂ)
64 nnm1nn0 11926 . . . . . . . 8 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
657, 64syl 17 . . . . . . 7 (𝜑 → (𝑃 − 1) ∈ ℕ0)
6665faccld 13640 . . . . . 6 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
6766nncnd 11641 . . . . 5 (𝜑 → (!‘(𝑃 − 1)) ∈ ℂ)
6866nnne0d 11675 . . . . 5 (𝜑 → (!‘(𝑃 − 1)) ≠ 0)
6963, 67, 68divcan3d 11408 . . . 4 (𝜑 → (((!‘(𝑃 − 1)) · (∏𝑗 ∈ (1...𝑀)-𝑗𝑃)) / (!‘(𝑃 − 1))) = (∏𝑗 ∈ (1...𝑀)-𝑗𝑃))
7059, 69eqtrd 2859 . . 3 (𝜑 → ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))) = (∏𝑗 ∈ (1...𝑀)-𝑗𝑃))
7170breq2d 5061 . 2 (𝜑 → (𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))) ↔ 𝑃 ∥ (∏𝑗 ∈ (1...𝑀)-𝑗𝑃)))
7252, 71mtbird 328 1 (𝜑 → ¬ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538  ⊤wtru 1539   ∈ wcel 2115  {crab 3136  ifcif 4448   class class class wbr 5049   ↦ cmpt 5129  ‘cfv 6338  (class class class)co 7140   ↑m cmap 8391  ℂcc 10522  ℝcr 10523  0cc0 10524  1c1 10525   · cmul 10529   < clt 10662   ≤ cle 10663   − cmin 10857  -cneg 10858   / cdiv 11284  ℕcn 11625  ℕ0cn0 11885  ℤcz 11969  ...cfz 12885  ↑cexp 13425  !cfa 13629  abscabs 14584  Σcsu 15033  ∏cprod 15250   ∥ cdvds 15598  ℙcprime 16004   D𝑛 cdvn 24458 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5173  ax-sep 5186  ax-nul 5193  ax-pow 5249  ax-pr 5313  ax-un 7446  ax-inf2 9090  ax-cnex 10580  ax-resscn 10581  ax-1cn 10582  ax-icn 10583  ax-addcl 10584  ax-addrcl 10585  ax-mulcl 10586  ax-mulrcl 10587  ax-mulcom 10588  ax-addass 10589  ax-mulass 10590  ax-distr 10591  ax-i2m1 10592  ax-1ne0 10593  ax-1rid 10594  ax-rnegex 10595  ax-rrecex 10596  ax-cnre 10597  ax-pre-lttri 10598  ax-pre-lttrn 10599  ax-pre-ltadd 10600  ax-pre-mulgt0 10601  ax-pre-sup 10602  ax-addf 10603  ax-mulf 10604 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4822  df-int 4860  df-iun 4904  df-iin 4905  df-br 5050  df-opab 5112  df-mpt 5130  df-tr 5156  df-id 5443  df-eprel 5448  df-po 5457  df-so 5458  df-fr 5497  df-se 5498  df-we 5499  df-xp 5544  df-rel 5545  df-cnv 5546  df-co 5547  df-dm 5548  df-rn 5549  df-res 5550  df-ima 5551  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6297  df-fun 6340  df-fn 6341  df-f 6342  df-f1 6343  df-fo 6344  df-f1o 6345  df-fv 6346  df-isom 6347  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7394  df-om 7566  df-1st 7674  df-2nd 7675  df-supp 7816  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-2o 8088  df-oadd 8091  df-er 8274  df-map 8393  df-pm 8394  df-ixp 8447  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-fsupp 8820  df-fi 8861  df-sup 8892  df-inf 8893  df-oi 8960  df-card 9354  df-pnf 10664  df-mnf 10665  df-xr 10666  df-ltxr 10667  df-le 10668  df-sub 10859  df-neg 10860  df-div 11285  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-clim 14836  df-sum 15034  df-prod 15251  df-dvds 15599  df-gcd 15833  df-prm 16005  df-struct 16476  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-plusg 16569  df-mulr 16570  df-starv 16571  df-sca 16572  df-vsca 16573  df-ip 16574  df-tset 16575  df-ple 16576  df-ds 16578  df-unif 16579  df-hom 16580  df-cco 16581  df-rest 16687  df-topn 16688  df-0g 16706  df-gsum 16707  df-topgen 16708  df-pt 16709  df-prds 16712  df-xrs 16766  df-qtop 16771  df-imas 16772  df-xps 16774  df-mre 16848  df-mrc 16849  df-acs 16851  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-submnd 17948  df-mulg 18216  df-cntz 18438  df-cmn 18899  df-psmet 20525  df-xmet 20526  df-met 20527  df-bl 20528  df-mopn 20529  df-fbas 20530  df-fg 20531  df-cnfld 20534  df-top 21490  df-topon 21507  df-topsp 21529  df-bases 21542  df-cld 21615  df-ntr 21616  df-cls 21617  df-nei 21694  df-lp 21732  df-perf 21733  df-cn 21823  df-cnp 21824  df-haus 21911  df-tx 22158  df-hmeo 22351  df-fil 22442  df-fm 22534  df-flim 22535  df-flf 22536  df-xms 22918  df-ms 22919  df-tms 22920  df-cncf 23474  df-limc 24460  df-dv 24461  df-dvn 24462 This theorem is referenced by:  etransclem44  42777
 Copyright terms: Public domain W3C validator