Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem41 Structured version   Visualization version   GIF version

Theorem etransclem41 41433
Description: 𝑃 does not divide the P-1 -th derivative of 𝐹 applied to 0. This is the first part of case 2: proven in in [Juillerat] p. 13 . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem41.m (𝜑𝑀 ∈ ℕ0)
etransclem41.p (𝜑𝑃 ∈ ℙ)
etransclem41.mp (𝜑 → (!‘𝑀) < 𝑃)
etransclem41.f 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
Assertion
Ref Expression
etransclem41 (𝜑 → ¬ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))))
Distinct variable groups:   𝑗,𝑀,𝑥   𝑃,𝑗,𝑥   𝜑,𝑗,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑗)

Proof of Theorem etransclem41
Dummy variables 𝑐 𝑑 𝑘 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem41.mp . . . . . . 7 (𝜑 → (!‘𝑀) < 𝑃)
2 etransclem41.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ0)
32faccld 13395 . . . . . . . . 9 (𝜑 → (!‘𝑀) ∈ ℕ)
43nnred 11396 . . . . . . . 8 (𝜑 → (!‘𝑀) ∈ ℝ)
5 etransclem41.p . . . . . . . . . 10 (𝜑𝑃 ∈ ℙ)
6 prmnn 15803 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
75, 6syl 17 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
87nnred 11396 . . . . . . . 8 (𝜑𝑃 ∈ ℝ)
94, 8ltnled 10525 . . . . . . 7 (𝜑 → ((!‘𝑀) < 𝑃 ↔ ¬ 𝑃 ≤ (!‘𝑀)))
101, 9mpbid 224 . . . . . 6 (𝜑 → ¬ 𝑃 ≤ (!‘𝑀))
117nnzd 11838 . . . . . . . . 9 (𝜑𝑃 ∈ ℤ)
1211, 3jca 507 . . . . . . . 8 (𝜑 → (𝑃 ∈ ℤ ∧ (!‘𝑀) ∈ ℕ))
1312adantr 474 . . . . . . 7 ((𝜑𝑃 ∥ (!‘𝑀)) → (𝑃 ∈ ℤ ∧ (!‘𝑀) ∈ ℕ))
14 simpr 479 . . . . . . 7 ((𝜑𝑃 ∥ (!‘𝑀)) → 𝑃 ∥ (!‘𝑀))
15 dvdsle 15449 . . . . . . 7 ((𝑃 ∈ ℤ ∧ (!‘𝑀) ∈ ℕ) → (𝑃 ∥ (!‘𝑀) → 𝑃 ≤ (!‘𝑀)))
1613, 14, 15sylc 65 . . . . . 6 ((𝜑𝑃 ∥ (!‘𝑀)) → 𝑃 ≤ (!‘𝑀))
1710, 16mtand 806 . . . . 5 (𝜑 → ¬ 𝑃 ∥ (!‘𝑀))
18 fprodfac 15115 . . . . . . . 8 (𝑀 ∈ ℕ0 → (!‘𝑀) = ∏𝑗 ∈ (1...𝑀)𝑗)
192, 18syl 17 . . . . . . 7 (𝜑 → (!‘𝑀) = ∏𝑗 ∈ (1...𝑀)𝑗)
20 fzfid 13096 . . . . . . . . . 10 (⊤ → (1...𝑀) ∈ Fin)
21 elfzelz 12664 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℤ)
2221znegcld 11841 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑀) → -𝑗 ∈ ℤ)
2322zcnd 11840 . . . . . . . . . . 11 (𝑗 ∈ (1...𝑀) → -𝑗 ∈ ℂ)
2423adantl 475 . . . . . . . . . 10 ((⊤ ∧ 𝑗 ∈ (1...𝑀)) → -𝑗 ∈ ℂ)
2520, 24fprodabs2 40749 . . . . . . . . 9 (⊤ → (abs‘∏𝑗 ∈ (1...𝑀)-𝑗) = ∏𝑗 ∈ (1...𝑀)(abs‘-𝑗))
2625mptru 1609 . . . . . . . 8 (abs‘∏𝑗 ∈ (1...𝑀)-𝑗) = ∏𝑗 ∈ (1...𝑀)(abs‘-𝑗)
2721zcnd 11840 . . . . . . . . . . 11 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℂ)
2827absnegd 14603 . . . . . . . . . 10 (𝑗 ∈ (1...𝑀) → (abs‘-𝑗) = (abs‘𝑗))
2921zred 11839 . . . . . . . . . . 11 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℝ)
30 0red 10382 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑀) → 0 ∈ ℝ)
31 1red 10379 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 1 ∈ ℝ)
32 0lt1 10900 . . . . . . . . . . . . . 14 0 < 1
3332a1i 11 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 0 < 1)
34 elfzle1 12666 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 1 ≤ 𝑗)
3530, 31, 29, 33, 34ltletrd 10538 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑀) → 0 < 𝑗)
3630, 29, 35ltled 10526 . . . . . . . . . . 11 (𝑗 ∈ (1...𝑀) → 0 ≤ 𝑗)
3729, 36absidd 14576 . . . . . . . . . 10 (𝑗 ∈ (1...𝑀) → (abs‘𝑗) = 𝑗)
3828, 37eqtrd 2814 . . . . . . . . 9 (𝑗 ∈ (1...𝑀) → (abs‘-𝑗) = 𝑗)
3938prodeq2i 15061 . . . . . . . 8 𝑗 ∈ (1...𝑀)(abs‘-𝑗) = ∏𝑗 ∈ (1...𝑀)𝑗
4026, 39eqtri 2802 . . . . . . 7 (abs‘∏𝑗 ∈ (1...𝑀)-𝑗) = ∏𝑗 ∈ (1...𝑀)𝑗
4119, 40syl6reqr 2833 . . . . . 6 (𝜑 → (abs‘∏𝑗 ∈ (1...𝑀)-𝑗) = (!‘𝑀))
4241breq2d 4900 . . . . 5 (𝜑 → (𝑃 ∥ (abs‘∏𝑗 ∈ (1...𝑀)-𝑗) ↔ 𝑃 ∥ (!‘𝑀)))
4317, 42mtbird 317 . . . 4 (𝜑 → ¬ 𝑃 ∥ (abs‘∏𝑗 ∈ (1...𝑀)-𝑗))
44 fzfid 13096 . . . . . 6 (𝜑 → (1...𝑀) ∈ Fin)
4522adantl 475 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → -𝑗 ∈ ℤ)
4644, 45fprodzcl 15096 . . . . 5 (𝜑 → ∏𝑗 ∈ (1...𝑀)-𝑗 ∈ ℤ)
47 dvdsabsb 15418 . . . . 5 ((𝑃 ∈ ℤ ∧ ∏𝑗 ∈ (1...𝑀)-𝑗 ∈ ℤ) → (𝑃 ∥ ∏𝑗 ∈ (1...𝑀)-𝑗𝑃 ∥ (abs‘∏𝑗 ∈ (1...𝑀)-𝑗)))
4811, 46, 47syl2anc 579 . . . 4 (𝜑 → (𝑃 ∥ ∏𝑗 ∈ (1...𝑀)-𝑗𝑃 ∥ (abs‘∏𝑗 ∈ (1...𝑀)-𝑗)))
4943, 48mtbird 317 . . 3 (𝜑 → ¬ 𝑃 ∥ ∏𝑗 ∈ (1...𝑀)-𝑗)
50 prmdvdsexp 15842 . . . 4 ((𝑃 ∈ ℙ ∧ ∏𝑗 ∈ (1...𝑀)-𝑗 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑃 ∥ (∏𝑗 ∈ (1...𝑀)-𝑗𝑃) ↔ 𝑃 ∥ ∏𝑗 ∈ (1...𝑀)-𝑗))
515, 46, 7, 50syl3anc 1439 . . 3 (𝜑 → (𝑃 ∥ (∏𝑗 ∈ (1...𝑀)-𝑗𝑃) ↔ 𝑃 ∥ ∏𝑗 ∈ (1...𝑀)-𝑗))
5249, 51mtbird 317 . 2 (𝜑 → ¬ 𝑃 ∥ (∏𝑗 ∈ (1...𝑀)-𝑗𝑃))
53 etransclem41.f . . . . . 6 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
54 etransclem11 41403 . . . . . 6 (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
55 eqeq1 2782 . . . . . . . 8 (𝑘 = 𝑗 → (𝑘 = 0 ↔ 𝑗 = 0))
5655ifbid 4329 . . . . . . 7 (𝑘 = 𝑗 → if(𝑘 = 0, (𝑃 − 1), 0) = if(𝑗 = 0, (𝑃 − 1), 0))
5756cbvmptv 4987 . . . . . 6 (𝑘 ∈ (0...𝑀) ↦ if(𝑘 = 0, (𝑃 − 1), 0)) = (𝑗 ∈ (0...𝑀) ↦ if(𝑗 = 0, (𝑃 − 1), 0))
587, 2, 53, 54, 57etransclem35 41427 . . . . 5 (𝜑 → (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) = ((!‘(𝑃 − 1)) · (∏𝑗 ∈ (1...𝑀)-𝑗𝑃)))
5958oveq1d 6939 . . . 4 (𝜑 → ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))) = (((!‘(𝑃 − 1)) · (∏𝑗 ∈ (1...𝑀)-𝑗𝑃)) / (!‘(𝑃 − 1))))
6023adantl 475 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → -𝑗 ∈ ℂ)
6144, 60fprodcl 15094 . . . . . 6 (𝜑 → ∏𝑗 ∈ (1...𝑀)-𝑗 ∈ ℂ)
627nnnn0d 11707 . . . . . 6 (𝜑𝑃 ∈ ℕ0)
6361, 62expcld 13332 . . . . 5 (𝜑 → (∏𝑗 ∈ (1...𝑀)-𝑗𝑃) ∈ ℂ)
64 nnm1nn0 11690 . . . . . . . 8 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
657, 64syl 17 . . . . . . 7 (𝜑 → (𝑃 − 1) ∈ ℕ0)
6665faccld 13395 . . . . . 6 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
6766nncnd 11397 . . . . 5 (𝜑 → (!‘(𝑃 − 1)) ∈ ℂ)
6866nnne0d 11430 . . . . 5 (𝜑 → (!‘(𝑃 − 1)) ≠ 0)
6963, 67, 68divcan3d 11159 . . . 4 (𝜑 → (((!‘(𝑃 − 1)) · (∏𝑗 ∈ (1...𝑀)-𝑗𝑃)) / (!‘(𝑃 − 1))) = (∏𝑗 ∈ (1...𝑀)-𝑗𝑃))
7059, 69eqtrd 2814 . . 3 (𝜑 → ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))) = (∏𝑗 ∈ (1...𝑀)-𝑗𝑃))
7170breq2d 4900 . 2 (𝜑 → (𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))) ↔ 𝑃 ∥ (∏𝑗 ∈ (1...𝑀)-𝑗𝑃)))
7252, 71mtbird 317 1 (𝜑 → ¬ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386   = wceq 1601  wtru 1602  wcel 2107  {crab 3094  ifcif 4307   class class class wbr 4888  cmpt 4967  cfv 6137  (class class class)co 6924  𝑚 cmap 8142  cc 10272  cr 10273  0cc0 10274  1c1 10275   · cmul 10279   < clt 10413  cle 10414  cmin 10608  -cneg 10609   / cdiv 11035  cn 11379  0cn0 11647  cz 11733  ...cfz 12648  cexp 13183  !cfa 13384  abscabs 14387  Σcsu 14833  cprod 15047  cdvds 15396  cprime 15800   D𝑛 cdvn 24076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-inf2 8837  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352  ax-addf 10353  ax-mulf 10354
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-iin 4758  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-se 5317  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-isom 6146  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-of 7176  df-om 7346  df-1st 7447  df-2nd 7448  df-supp 7579  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-2o 7846  df-oadd 7849  df-er 8028  df-map 8144  df-pm 8145  df-ixp 8197  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-fsupp 8566  df-fi 8607  df-sup 8638  df-inf 8639  df-oi 8706  df-card 9100  df-cda 9327  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11036  df-nn 11380  df-2 11443  df-3 11444  df-4 11445  df-5 11446  df-6 11447  df-7 11448  df-8 11449  df-9 11450  df-n0 11648  df-z 11734  df-dec 11851  df-uz 11998  df-q 12101  df-rp 12143  df-xneg 12262  df-xadd 12263  df-xmul 12264  df-ioo 12496  df-ico 12498  df-icc 12499  df-fz 12649  df-fzo 12790  df-fl 12917  df-mod 12993  df-seq 13125  df-exp 13184  df-fac 13385  df-bc 13414  df-hash 13442  df-cj 14252  df-re 14253  df-im 14254  df-sqrt 14388  df-abs 14389  df-clim 14636  df-sum 14834  df-prod 15048  df-dvds 15397  df-gcd 15633  df-prm 15801  df-struct 16268  df-ndx 16269  df-slot 16270  df-base 16272  df-sets 16273  df-ress 16274  df-plusg 16362  df-mulr 16363  df-starv 16364  df-sca 16365  df-vsca 16366  df-ip 16367  df-tset 16368  df-ple 16369  df-ds 16371  df-unif 16372  df-hom 16373  df-cco 16374  df-rest 16480  df-topn 16481  df-0g 16499  df-gsum 16500  df-topgen 16501  df-pt 16502  df-prds 16505  df-xrs 16559  df-qtop 16564  df-imas 16565  df-xps 16567  df-mre 16643  df-mrc 16644  df-acs 16646  df-mgm 17639  df-sgrp 17681  df-mnd 17692  df-submnd 17733  df-mulg 17939  df-cntz 18144  df-cmn 18592  df-psmet 20145  df-xmet 20146  df-met 20147  df-bl 20148  df-mopn 20149  df-fbas 20150  df-fg 20151  df-cnfld 20154  df-top 21117  df-topon 21134  df-topsp 21156  df-bases 21169  df-cld 21242  df-ntr 21243  df-cls 21244  df-nei 21321  df-lp 21359  df-perf 21360  df-cn 21450  df-cnp 21451  df-haus 21538  df-tx 21785  df-hmeo 21978  df-fil 22069  df-fm 22161  df-flim 22162  df-flf 22163  df-xms 22544  df-ms 22545  df-tms 22546  df-cncf 23100  df-limc 24078  df-dv 24079  df-dvn 24080
This theorem is referenced by:  etransclem44  41436
  Copyright terms: Public domain W3C validator