Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem41 Structured version   Visualization version   GIF version

Theorem etransclem41 46266
Description: 𝑃 does not divide the P-1 -th derivative of 𝐹 applied to 0. This is the first part of case 2: proven in in [Juillerat] p. 13 . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem41.m (𝜑𝑀 ∈ ℕ0)
etransclem41.p (𝜑𝑃 ∈ ℙ)
etransclem41.mp (𝜑 → (!‘𝑀) < 𝑃)
etransclem41.f 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
Assertion
Ref Expression
etransclem41 (𝜑 → ¬ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))))
Distinct variable groups:   𝑗,𝑀,𝑥   𝑃,𝑗,𝑥   𝜑,𝑗,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑗)

Proof of Theorem etransclem41
Dummy variables 𝑐 𝑑 𝑘 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem41.mp . . . . . . 7 (𝜑 → (!‘𝑀) < 𝑃)
2 etransclem41.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ0)
32faccld 14225 . . . . . . . . 9 (𝜑 → (!‘𝑀) ∈ ℕ)
43nnred 12177 . . . . . . . 8 (𝜑 → (!‘𝑀) ∈ ℝ)
5 etransclem41.p . . . . . . . . . 10 (𝜑𝑃 ∈ ℙ)
6 prmnn 16620 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
75, 6syl 17 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
87nnred 12177 . . . . . . . 8 (𝜑𝑃 ∈ ℝ)
94, 8ltnled 11297 . . . . . . 7 (𝜑 → ((!‘𝑀) < 𝑃 ↔ ¬ 𝑃 ≤ (!‘𝑀)))
101, 9mpbid 232 . . . . . 6 (𝜑 → ¬ 𝑃 ≤ (!‘𝑀))
117nnzd 12532 . . . . . . . . 9 (𝜑𝑃 ∈ ℤ)
1211, 3jca 511 . . . . . . . 8 (𝜑 → (𝑃 ∈ ℤ ∧ (!‘𝑀) ∈ ℕ))
1312adantr 480 . . . . . . 7 ((𝜑𝑃 ∥ (!‘𝑀)) → (𝑃 ∈ ℤ ∧ (!‘𝑀) ∈ ℕ))
14 simpr 484 . . . . . . 7 ((𝜑𝑃 ∥ (!‘𝑀)) → 𝑃 ∥ (!‘𝑀))
15 dvdsle 16256 . . . . . . 7 ((𝑃 ∈ ℤ ∧ (!‘𝑀) ∈ ℕ) → (𝑃 ∥ (!‘𝑀) → 𝑃 ≤ (!‘𝑀)))
1613, 14, 15sylc 65 . . . . . 6 ((𝜑𝑃 ∥ (!‘𝑀)) → 𝑃 ≤ (!‘𝑀))
1710, 16mtand 815 . . . . 5 (𝜑 → ¬ 𝑃 ∥ (!‘𝑀))
18 fzfid 13914 . . . . . . . . . 10 (⊤ → (1...𝑀) ∈ Fin)
19 elfzelz 13461 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℤ)
2019znegcld 12616 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑀) → -𝑗 ∈ ℤ)
2120zcnd 12615 . . . . . . . . . . 11 (𝑗 ∈ (1...𝑀) → -𝑗 ∈ ℂ)
2221adantl 481 . . . . . . . . . 10 ((⊤ ∧ 𝑗 ∈ (1...𝑀)) → -𝑗 ∈ ℂ)
2318, 22fprodabs2 45586 . . . . . . . . 9 (⊤ → (abs‘∏𝑗 ∈ (1...𝑀)-𝑗) = ∏𝑗 ∈ (1...𝑀)(abs‘-𝑗))
2423mptru 1547 . . . . . . . 8 (abs‘∏𝑗 ∈ (1...𝑀)-𝑗) = ∏𝑗 ∈ (1...𝑀)(abs‘-𝑗)
2519zcnd 12615 . . . . . . . . . . 11 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℂ)
2625absnegd 15394 . . . . . . . . . 10 (𝑗 ∈ (1...𝑀) → (abs‘-𝑗) = (abs‘𝑗))
2719zred 12614 . . . . . . . . . . 11 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℝ)
28 0red 11153 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑀) → 0 ∈ ℝ)
29 1red 11151 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 1 ∈ ℝ)
30 0lt1 11676 . . . . . . . . . . . . . 14 0 < 1
3130a1i 11 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 0 < 1)
32 elfzle1 13464 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 1 ≤ 𝑗)
3328, 29, 27, 31, 32ltletrd 11310 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑀) → 0 < 𝑗)
3428, 27, 33ltled 11298 . . . . . . . . . . 11 (𝑗 ∈ (1...𝑀) → 0 ≤ 𝑗)
3527, 34absidd 15365 . . . . . . . . . 10 (𝑗 ∈ (1...𝑀) → (abs‘𝑗) = 𝑗)
3626, 35eqtrd 2764 . . . . . . . . 9 (𝑗 ∈ (1...𝑀) → (abs‘-𝑗) = 𝑗)
3736prodeq2i 15860 . . . . . . . 8 𝑗 ∈ (1...𝑀)(abs‘-𝑗) = ∏𝑗 ∈ (1...𝑀)𝑗
3824, 37eqtri 2752 . . . . . . 7 (abs‘∏𝑗 ∈ (1...𝑀)-𝑗) = ∏𝑗 ∈ (1...𝑀)𝑗
39 fprodfac 15915 . . . . . . . 8 (𝑀 ∈ ℕ0 → (!‘𝑀) = ∏𝑗 ∈ (1...𝑀)𝑗)
402, 39syl 17 . . . . . . 7 (𝜑 → (!‘𝑀) = ∏𝑗 ∈ (1...𝑀)𝑗)
4138, 40eqtr4id 2783 . . . . . 6 (𝜑 → (abs‘∏𝑗 ∈ (1...𝑀)-𝑗) = (!‘𝑀))
4241breq2d 5114 . . . . 5 (𝜑 → (𝑃 ∥ (abs‘∏𝑗 ∈ (1...𝑀)-𝑗) ↔ 𝑃 ∥ (!‘𝑀)))
4317, 42mtbird 325 . . . 4 (𝜑 → ¬ 𝑃 ∥ (abs‘∏𝑗 ∈ (1...𝑀)-𝑗))
44 fzfid 13914 . . . . . 6 (𝜑 → (1...𝑀) ∈ Fin)
4520adantl 481 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → -𝑗 ∈ ℤ)
4644, 45fprodzcl 15896 . . . . 5 (𝜑 → ∏𝑗 ∈ (1...𝑀)-𝑗 ∈ ℤ)
47 dvdsabsb 16221 . . . . 5 ((𝑃 ∈ ℤ ∧ ∏𝑗 ∈ (1...𝑀)-𝑗 ∈ ℤ) → (𝑃 ∥ ∏𝑗 ∈ (1...𝑀)-𝑗𝑃 ∥ (abs‘∏𝑗 ∈ (1...𝑀)-𝑗)))
4811, 46, 47syl2anc 584 . . . 4 (𝜑 → (𝑃 ∥ ∏𝑗 ∈ (1...𝑀)-𝑗𝑃 ∥ (abs‘∏𝑗 ∈ (1...𝑀)-𝑗)))
4943, 48mtbird 325 . . 3 (𝜑 → ¬ 𝑃 ∥ ∏𝑗 ∈ (1...𝑀)-𝑗)
50 prmdvdsexp 16661 . . . 4 ((𝑃 ∈ ℙ ∧ ∏𝑗 ∈ (1...𝑀)-𝑗 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑃 ∥ (∏𝑗 ∈ (1...𝑀)-𝑗𝑃) ↔ 𝑃 ∥ ∏𝑗 ∈ (1...𝑀)-𝑗))
515, 46, 7, 50syl3anc 1373 . . 3 (𝜑 → (𝑃 ∥ (∏𝑗 ∈ (1...𝑀)-𝑗𝑃) ↔ 𝑃 ∥ ∏𝑗 ∈ (1...𝑀)-𝑗))
5249, 51mtbird 325 . 2 (𝜑 → ¬ 𝑃 ∥ (∏𝑗 ∈ (1...𝑀)-𝑗𝑃))
53 etransclem41.f . . . . . 6 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
54 etransclem11 46236 . . . . . 6 (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
55 eqeq1 2733 . . . . . . . 8 (𝑘 = 𝑗 → (𝑘 = 0 ↔ 𝑗 = 0))
5655ifbid 4508 . . . . . . 7 (𝑘 = 𝑗 → if(𝑘 = 0, (𝑃 − 1), 0) = if(𝑗 = 0, (𝑃 − 1), 0))
5756cbvmptv 5206 . . . . . 6 (𝑘 ∈ (0...𝑀) ↦ if(𝑘 = 0, (𝑃 − 1), 0)) = (𝑗 ∈ (0...𝑀) ↦ if(𝑗 = 0, (𝑃 − 1), 0))
587, 2, 53, 54, 57etransclem35 46260 . . . . 5 (𝜑 → (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) = ((!‘(𝑃 − 1)) · (∏𝑗 ∈ (1...𝑀)-𝑗𝑃)))
5958oveq1d 7384 . . . 4 (𝜑 → ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))) = (((!‘(𝑃 − 1)) · (∏𝑗 ∈ (1...𝑀)-𝑗𝑃)) / (!‘(𝑃 − 1))))
6021adantl 481 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → -𝑗 ∈ ℂ)
6144, 60fprodcl 15894 . . . . . 6 (𝜑 → ∏𝑗 ∈ (1...𝑀)-𝑗 ∈ ℂ)
627nnnn0d 12479 . . . . . 6 (𝜑𝑃 ∈ ℕ0)
6361, 62expcld 14087 . . . . 5 (𝜑 → (∏𝑗 ∈ (1...𝑀)-𝑗𝑃) ∈ ℂ)
64 nnm1nn0 12459 . . . . . . . 8 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
657, 64syl 17 . . . . . . 7 (𝜑 → (𝑃 − 1) ∈ ℕ0)
6665faccld 14225 . . . . . 6 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
6766nncnd 12178 . . . . 5 (𝜑 → (!‘(𝑃 − 1)) ∈ ℂ)
6866nnne0d 12212 . . . . 5 (𝜑 → (!‘(𝑃 − 1)) ≠ 0)
6963, 67, 68divcan3d 11939 . . . 4 (𝜑 → (((!‘(𝑃 − 1)) · (∏𝑗 ∈ (1...𝑀)-𝑗𝑃)) / (!‘(𝑃 − 1))) = (∏𝑗 ∈ (1...𝑀)-𝑗𝑃))
7059, 69eqtrd 2764 . . 3 (𝜑 → ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))) = (∏𝑗 ∈ (1...𝑀)-𝑗𝑃))
7170breq2d 5114 . 2 (𝜑 → (𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))) ↔ 𝑃 ∥ (∏𝑗 ∈ (1...𝑀)-𝑗𝑃)))
7252, 71mtbird 325 1 (𝜑 → ¬ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2109  {crab 3402  ifcif 4484   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  m cmap 8776  cc 11042  cr 11043  0cc0 11044  1c1 11045   · cmul 11049   < clt 11184  cle 11185  cmin 11381  -cneg 11382   / cdiv 11811  cn 12162  0cn0 12418  cz 12505  ...cfz 13444  cexp 14002  !cfa 14214  abscabs 15176  Σcsu 15628  cprod 15845  cdvds 16198  cprime 16617   D𝑛 cdvn 25798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-prod 15846  df-dvds 16199  df-gcd 16441  df-prm 16618  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-mulg 18982  df-cntz 19231  df-cmn 19696  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-lp 23056  df-perf 23057  df-cn 23147  df-cnp 23148  df-haus 23235  df-tx 23482  df-hmeo 23675  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-xms 24241  df-ms 24242  df-tms 24243  df-cncf 24804  df-limc 25800  df-dv 25801  df-dvn 25802
This theorem is referenced by:  etransclem44  46269
  Copyright terms: Public domain W3C validator