| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bernneq2 | Structured version Visualization version GIF version | ||
| Description: Variation of Bernoulli's inequality bernneq 14136. (Contributed by NM, 18-Oct-2007.) |
| Ref | Expression |
|---|---|
| bernneq2 | ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → (((𝐴 − 1) · 𝑁) + 1) ≤ (𝐴↑𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2rem 11428 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ) | |
| 2 | 1 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → (𝐴 − 1) ∈ ℝ) |
| 3 | simp2 1137 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 𝑁 ∈ ℕ0) | |
| 4 | df-neg 11347 | . . . . 5 ⊢ -1 = (0 − 1) | |
| 5 | 0re 11114 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 6 | 1re 11112 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 7 | lesub1 11611 | . . . . . . 7 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 − 1) ≤ (𝐴 − 1))) | |
| 8 | 5, 6, 7 | mp3an13 1454 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ (0 − 1) ≤ (𝐴 − 1))) |
| 9 | 8 | biimpa 476 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0 − 1) ≤ (𝐴 − 1)) |
| 10 | 4, 9 | eqbrtrid 5124 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → -1 ≤ (𝐴 − 1)) |
| 11 | 10 | 3adant2 1131 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → -1 ≤ (𝐴 − 1)) |
| 12 | bernneq 14136 | . . 3 ⊢ (((𝐴 − 1) ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ -1 ≤ (𝐴 − 1)) → (1 + ((𝐴 − 1) · 𝑁)) ≤ ((1 + (𝐴 − 1))↑𝑁)) | |
| 13 | 2, 3, 11, 12 | syl3anc 1373 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → (1 + ((𝐴 − 1) · 𝑁)) ≤ ((1 + (𝐴 − 1))↑𝑁)) |
| 14 | ax-1cn 11064 | . . . 4 ⊢ 1 ∈ ℂ | |
| 15 | 1 | recnd 11140 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℂ) |
| 16 | nn0cn 12391 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
| 17 | mulcl 11090 | . . . . 5 ⊢ (((𝐴 − 1) ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐴 − 1) · 𝑁) ∈ ℂ) | |
| 18 | 15, 16, 17 | syl2an 596 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → ((𝐴 − 1) · 𝑁) ∈ ℂ) |
| 19 | addcom 11299 | . . . 4 ⊢ ((1 ∈ ℂ ∧ ((𝐴 − 1) · 𝑁) ∈ ℂ) → (1 + ((𝐴 − 1) · 𝑁)) = (((𝐴 − 1) · 𝑁) + 1)) | |
| 20 | 14, 18, 19 | sylancr 587 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (1 + ((𝐴 − 1) · 𝑁)) = (((𝐴 − 1) · 𝑁) + 1)) |
| 21 | 20 | 3adant3 1132 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → (1 + ((𝐴 − 1) · 𝑁)) = (((𝐴 − 1) · 𝑁) + 1)) |
| 22 | recn 11096 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 23 | pncan3 11368 | . . . . 5 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 + (𝐴 − 1)) = 𝐴) | |
| 24 | 14, 22, 23 | sylancr 587 | . . . 4 ⊢ (𝐴 ∈ ℝ → (1 + (𝐴 − 1)) = 𝐴) |
| 25 | 24 | oveq1d 7361 | . . 3 ⊢ (𝐴 ∈ ℝ → ((1 + (𝐴 − 1))↑𝑁) = (𝐴↑𝑁)) |
| 26 | 25 | 3ad2ant1 1133 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → ((1 + (𝐴 − 1))↑𝑁) = (𝐴↑𝑁)) |
| 27 | 13, 21, 26 | 3brtr3d 5120 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → (((𝐴 − 1) · 𝑁) + 1) ≤ (𝐴↑𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 (class class class)co 7346 ℂcc 11004 ℝcr 11005 0cc0 11006 1c1 11007 + caddc 11009 · cmul 11011 ≤ cle 11147 − cmin 11344 -cneg 11345 ℕ0cn0 12381 ↑cexp 13968 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-seq 13909 df-exp 13969 |
| This theorem is referenced by: bernneq3 14138 expnbnd 14139 expmulnbnd 14142 expcnv 15771 ostth2lem1 27556 |
| Copyright terms: Public domain | W3C validator |