MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bernneq2 Structured version   Visualization version   GIF version

Theorem bernneq2 14253
Description: Variation of Bernoulli's inequality bernneq 14252. (Contributed by NM, 18-Oct-2007.)
Assertion
Ref Expression
bernneq2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → (((𝐴 − 1) · 𝑁) + 1) ≤ (𝐴𝑁))

Proof of Theorem bernneq2
StepHypRef Expression
1 peano2rem 11555 . . . 4 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
213ad2ant1 1133 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → (𝐴 − 1) ∈ ℝ)
3 simp2 1137 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 𝑁 ∈ ℕ0)
4 df-neg 11474 . . . . 5 -1 = (0 − 1)
5 0re 11242 . . . . . . 7 0 ∈ ℝ
6 1re 11240 . . . . . . 7 1 ∈ ℝ
7 lesub1 11736 . . . . . . 7 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 − 1) ≤ (𝐴 − 1)))
85, 6, 7mp3an13 1454 . . . . . 6 (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ (0 − 1) ≤ (𝐴 − 1)))
98biimpa 476 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0 − 1) ≤ (𝐴 − 1))
104, 9eqbrtrid 5159 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → -1 ≤ (𝐴 − 1))
11103adant2 1131 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → -1 ≤ (𝐴 − 1))
12 bernneq 14252 . . 3 (((𝐴 − 1) ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ -1 ≤ (𝐴 − 1)) → (1 + ((𝐴 − 1) · 𝑁)) ≤ ((1 + (𝐴 − 1))↑𝑁))
132, 3, 11, 12syl3anc 1373 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → (1 + ((𝐴 − 1) · 𝑁)) ≤ ((1 + (𝐴 − 1))↑𝑁))
14 ax-1cn 11192 . . . 4 1 ∈ ℂ
151recnd 11268 . . . . 5 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℂ)
16 nn0cn 12516 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
17 mulcl 11218 . . . . 5 (((𝐴 − 1) ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐴 − 1) · 𝑁) ∈ ℂ)
1815, 16, 17syl2an 596 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → ((𝐴 − 1) · 𝑁) ∈ ℂ)
19 addcom 11426 . . . 4 ((1 ∈ ℂ ∧ ((𝐴 − 1) · 𝑁) ∈ ℂ) → (1 + ((𝐴 − 1) · 𝑁)) = (((𝐴 − 1) · 𝑁) + 1))
2014, 18, 19sylancr 587 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (1 + ((𝐴 − 1) · 𝑁)) = (((𝐴 − 1) · 𝑁) + 1))
21203adant3 1132 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → (1 + ((𝐴 − 1) · 𝑁)) = (((𝐴 − 1) · 𝑁) + 1))
22 recn 11224 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
23 pncan3 11495 . . . . 5 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 + (𝐴 − 1)) = 𝐴)
2414, 22, 23sylancr 587 . . . 4 (𝐴 ∈ ℝ → (1 + (𝐴 − 1)) = 𝐴)
2524oveq1d 7425 . . 3 (𝐴 ∈ ℝ → ((1 + (𝐴 − 1))↑𝑁) = (𝐴𝑁))
26253ad2ant1 1133 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → ((1 + (𝐴 − 1))↑𝑁) = (𝐴𝑁))
2713, 21, 263brtr3d 5155 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → (((𝐴 − 1) · 𝑁) + 1) ≤ (𝐴𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5124  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  cle 11275  cmin 11471  -cneg 11472  0cn0 12506  cexp 14084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-seq 14025  df-exp 14085
This theorem is referenced by:  bernneq3  14254  expnbnd  14255  expmulnbnd  14258  expcnv  15885  ostth2lem1  27586
  Copyright terms: Public domain W3C validator