MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bernneq3 Structured version   Visualization version   GIF version

Theorem bernneq3 13798
Description: A corollary of bernneq 13796. (Contributed by Mario Carneiro, 11-Mar-2014.)
Assertion
Ref Expression
bernneq3 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (𝑃𝑁))

Proof of Theorem bernneq3
StepHypRef Expression
1 nn0re 12099 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
21adantl 485 . 2 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
3 peano2re 11005 . . 3 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
42, 3syl 17 . 2 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℝ)
5 eluzelre 12449 . . 3 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℝ)
6 reexpcl 13652 . . 3 ((𝑃 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑃𝑁) ∈ ℝ)
75, 6sylan 583 . 2 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝑃𝑁) ∈ ℝ)
82ltp1d 11762 . 2 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (𝑁 + 1))
9 uz2m1nn 12519 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → (𝑃 − 1) ∈ ℕ)
109adantr 484 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝑃 − 1) ∈ ℕ)
1110nnred 11845 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝑃 − 1) ∈ ℝ)
1211, 2remulcld 10863 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → ((𝑃 − 1) · 𝑁) ∈ ℝ)
13 peano2re 11005 . . . 4 (((𝑃 − 1) · 𝑁) ∈ ℝ → (((𝑃 − 1) · 𝑁) + 1) ∈ ℝ)
1412, 13syl 17 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (((𝑃 − 1) · 𝑁) + 1) ∈ ℝ)
15 1red 10834 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 1 ∈ ℝ)
16 nn0ge0 12115 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
1716adantl 485 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 0 ≤ 𝑁)
1810nnge1d 11878 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 1 ≤ (𝑃 − 1))
192, 11, 17, 18lemulge12d 11770 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ ((𝑃 − 1) · 𝑁))
202, 12, 15, 19leadd1dd 11446 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≤ (((𝑃 − 1) · 𝑁) + 1))
215adantr 484 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑃 ∈ ℝ)
22 simpr 488 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
23 eluzge2nn0 12483 . . . . . 6 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ0)
24 nn0ge0 12115 . . . . . 6 (𝑃 ∈ ℕ0 → 0 ≤ 𝑃)
2523, 24syl 17 . . . . 5 (𝑃 ∈ (ℤ‘2) → 0 ≤ 𝑃)
2625adantr 484 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 0 ≤ 𝑃)
27 bernneq2 13797 . . . 4 ((𝑃 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝑃) → (((𝑃 − 1) · 𝑁) + 1) ≤ (𝑃𝑁))
2821, 22, 26, 27syl3anc 1373 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (((𝑃 − 1) · 𝑁) + 1) ≤ (𝑃𝑁))
294, 14, 7, 20, 28letrd 10989 . 2 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≤ (𝑃𝑁))
302, 4, 7, 8, 29ltletrd 10992 1 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (𝑃𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2110   class class class wbr 5053  cfv 6380  (class class class)co 7213  cr 10728  0cc0 10729  1c1 10730   + caddc 10732   · cmul 10734   < clt 10867  cle 10868  cmin 11062  cn 11830  2c2 11885  0cn0 12090  cuz 12438  cexp 13635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-n0 12091  df-z 12177  df-uz 12439  df-seq 13575  df-exp 13636
This theorem is referenced by:  climcnds  15415  bitsfzo  15994  bitsinv1  16001  pcfaclem  16451  pcfac  16452  chpchtsum  26100  bposlem1  26165
  Copyright terms: Public domain W3C validator