MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bernneq3 Structured version   Visualization version   GIF version

Theorem bernneq3 13595
Description: A corollary of bernneq 13593. (Contributed by Mario Carneiro, 11-Mar-2014.)
Assertion
Ref Expression
bernneq3 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (𝑃𝑁))

Proof of Theorem bernneq3
StepHypRef Expression
1 nn0re 11909 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
21adantl 484 . 2 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
3 peano2re 10815 . . 3 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
42, 3syl 17 . 2 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℝ)
5 eluzelre 12257 . . 3 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℝ)
6 reexpcl 13449 . . 3 ((𝑃 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑃𝑁) ∈ ℝ)
75, 6sylan 582 . 2 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝑃𝑁) ∈ ℝ)
82ltp1d 11572 . 2 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (𝑁 + 1))
9 uz2m1nn 12326 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → (𝑃 − 1) ∈ ℕ)
109adantr 483 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝑃 − 1) ∈ ℕ)
1110nnred 11655 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝑃 − 1) ∈ ℝ)
1211, 2remulcld 10673 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → ((𝑃 − 1) · 𝑁) ∈ ℝ)
13 peano2re 10815 . . . 4 (((𝑃 − 1) · 𝑁) ∈ ℝ → (((𝑃 − 1) · 𝑁) + 1) ∈ ℝ)
1412, 13syl 17 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (((𝑃 − 1) · 𝑁) + 1) ∈ ℝ)
15 1red 10644 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 1 ∈ ℝ)
16 nn0ge0 11925 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
1716adantl 484 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 0 ≤ 𝑁)
1810nnge1d 11688 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 1 ≤ (𝑃 − 1))
192, 11, 17, 18lemulge12d 11580 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ ((𝑃 − 1) · 𝑁))
202, 12, 15, 19leadd1dd 11256 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≤ (((𝑃 − 1) · 𝑁) + 1))
215adantr 483 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑃 ∈ ℝ)
22 simpr 487 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
23 eluzge2nn0 12290 . . . . . 6 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ0)
24 nn0ge0 11925 . . . . . 6 (𝑃 ∈ ℕ0 → 0 ≤ 𝑃)
2523, 24syl 17 . . . . 5 (𝑃 ∈ (ℤ‘2) → 0 ≤ 𝑃)
2625adantr 483 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 0 ≤ 𝑃)
27 bernneq2 13594 . . . 4 ((𝑃 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝑃) → (((𝑃 − 1) · 𝑁) + 1) ≤ (𝑃𝑁))
2821, 22, 26, 27syl3anc 1367 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (((𝑃 − 1) · 𝑁) + 1) ≤ (𝑃𝑁))
294, 14, 7, 20, 28letrd 10799 . 2 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≤ (𝑃𝑁))
302, 4, 7, 8, 29ltletrd 10802 1 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (𝑃𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2114   class class class wbr 5068  cfv 6357  (class class class)co 7158  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544   < clt 10677  cle 10678  cmin 10872  cn 11640  2c2 11695  0cn0 11900  cuz 12246  cexp 13432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-seq 13373  df-exp 13433
This theorem is referenced by:  climcnds  15208  bitsfzo  15786  bitsinv1  15793  pcfaclem  16236  pcfac  16237  chpchtsum  25797  bposlem1  25862
  Copyright terms: Public domain W3C validator