Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bernneq3 | Structured version Visualization version GIF version |
Description: A corollary of bernneq 13796. (Contributed by Mario Carneiro, 11-Mar-2014.) |
Ref | Expression |
---|---|
bernneq3 | ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (𝑃↑𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re 12099 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
2 | 1 | adantl 485 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ) |
3 | peano2re 11005 | . . 3 ⊢ (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ) | |
4 | 2, 3 | syl 17 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℝ) |
5 | eluzelre 12449 | . . 3 ⊢ (𝑃 ∈ (ℤ≥‘2) → 𝑃 ∈ ℝ) | |
6 | reexpcl 13652 | . . 3 ⊢ ((𝑃 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑃↑𝑁) ∈ ℝ) | |
7 | 5, 6 | sylan 583 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝑃↑𝑁) ∈ ℝ) |
8 | 2 | ltp1d 11762 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (𝑁 + 1)) |
9 | uz2m1nn 12519 | . . . . . . 7 ⊢ (𝑃 ∈ (ℤ≥‘2) → (𝑃 − 1) ∈ ℕ) | |
10 | 9 | adantr 484 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝑃 − 1) ∈ ℕ) |
11 | 10 | nnred 11845 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝑃 − 1) ∈ ℝ) |
12 | 11, 2 | remulcld 10863 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → ((𝑃 − 1) · 𝑁) ∈ ℝ) |
13 | peano2re 11005 | . . . 4 ⊢ (((𝑃 − 1) · 𝑁) ∈ ℝ → (((𝑃 − 1) · 𝑁) + 1) ∈ ℝ) | |
14 | 12, 13 | syl 17 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (((𝑃 − 1) · 𝑁) + 1) ∈ ℝ) |
15 | 1red 10834 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 1 ∈ ℝ) | |
16 | nn0ge0 12115 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | |
17 | 16 | adantl 485 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 0 ≤ 𝑁) |
18 | 10 | nnge1d 11878 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 1 ≤ (𝑃 − 1)) |
19 | 2, 11, 17, 18 | lemulge12d 11770 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ ((𝑃 − 1) · 𝑁)) |
20 | 2, 12, 15, 19 | leadd1dd 11446 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≤ (((𝑃 − 1) · 𝑁) + 1)) |
21 | 5 | adantr 484 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑃 ∈ ℝ) |
22 | simpr 488 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
23 | eluzge2nn0 12483 | . . . . . 6 ⊢ (𝑃 ∈ (ℤ≥‘2) → 𝑃 ∈ ℕ0) | |
24 | nn0ge0 12115 | . . . . . 6 ⊢ (𝑃 ∈ ℕ0 → 0 ≤ 𝑃) | |
25 | 23, 24 | syl 17 | . . . . 5 ⊢ (𝑃 ∈ (ℤ≥‘2) → 0 ≤ 𝑃) |
26 | 25 | adantr 484 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 0 ≤ 𝑃) |
27 | bernneq2 13797 | . . . 4 ⊢ ((𝑃 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝑃) → (((𝑃 − 1) · 𝑁) + 1) ≤ (𝑃↑𝑁)) | |
28 | 21, 22, 26, 27 | syl3anc 1373 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (((𝑃 − 1) · 𝑁) + 1) ≤ (𝑃↑𝑁)) |
29 | 4, 14, 7, 20, 28 | letrd 10989 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≤ (𝑃↑𝑁)) |
30 | 2, 4, 7, 8, 29 | ltletrd 10992 | 1 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (𝑃↑𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2110 class class class wbr 5053 ‘cfv 6380 (class class class)co 7213 ℝcr 10728 0cc0 10729 1c1 10730 + caddc 10732 · cmul 10734 < clt 10867 ≤ cle 10868 − cmin 11062 ℕcn 11830 2c2 11885 ℕ0cn0 12090 ℤ≥cuz 12438 ↑cexp 13635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-n0 12091 df-z 12177 df-uz 12439 df-seq 13575 df-exp 13636 |
This theorem is referenced by: climcnds 15415 bitsfzo 15994 bitsinv1 16001 pcfaclem 16451 pcfac 16452 chpchtsum 26100 bposlem1 26165 |
Copyright terms: Public domain | W3C validator |