![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bitsp1e | Structured version Visualization version GIF version |
Description: The π + 1-th bit of 2π is the π-th bit of π. (Contributed by Mario Carneiro, 5-Sep-2016.) |
Ref | Expression |
---|---|
bitsp1e | β’ ((π β β€ β§ π β β0) β ((π + 1) β (bitsβ(2 Β· π)) β π β (bitsβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2z 12593 | . . . . 5 β’ 2 β β€ | |
2 | 1 | a1i 11 | . . . 4 β’ (π β β€ β 2 β β€) |
3 | id 22 | . . . 4 β’ (π β β€ β π β β€) | |
4 | 2, 3 | zmulcld 12671 | . . 3 β’ (π β β€ β (2 Β· π) β β€) |
5 | bitsp1 16371 | . . 3 β’ (((2 Β· π) β β€ β§ π β β0) β ((π + 1) β (bitsβ(2 Β· π)) β π β (bitsβ(ββ((2 Β· π) / 2))))) | |
6 | 4, 5 | sylan 580 | . 2 β’ ((π β β€ β§ π β β0) β ((π + 1) β (bitsβ(2 Β· π)) β π β (bitsβ(ββ((2 Β· π) / 2))))) |
7 | zcn 12562 | . . . . . . . 8 β’ (π β β€ β π β β) | |
8 | 2cnd 12289 | . . . . . . . 8 β’ (π β β€ β 2 β β) | |
9 | 2ne0 12315 | . . . . . . . . 9 β’ 2 β 0 | |
10 | 9 | a1i 11 | . . . . . . . 8 β’ (π β β€ β 2 β 0) |
11 | 7, 8, 10 | divcan3d 11994 | . . . . . . 7 β’ (π β β€ β ((2 Β· π) / 2) = π) |
12 | 11 | fveq2d 6895 | . . . . . 6 β’ (π β β€ β (ββ((2 Β· π) / 2)) = (ββπ)) |
13 | flid 13772 | . . . . . 6 β’ (π β β€ β (ββπ) = π) | |
14 | 12, 13 | eqtrd 2772 | . . . . 5 β’ (π β β€ β (ββ((2 Β· π) / 2)) = π) |
15 | 14 | adantr 481 | . . . 4 β’ ((π β β€ β§ π β β0) β (ββ((2 Β· π) / 2)) = π) |
16 | 15 | fveq2d 6895 | . . 3 β’ ((π β β€ β§ π β β0) β (bitsβ(ββ((2 Β· π) / 2))) = (bitsβπ)) |
17 | 16 | eleq2d 2819 | . 2 β’ ((π β β€ β§ π β β0) β (π β (bitsβ(ββ((2 Β· π) / 2))) β π β (bitsβπ))) |
18 | 6, 17 | bitrd 278 | 1 β’ ((π β β€ β§ π β β0) β ((π + 1) β (bitsβ(2 Β· π)) β π β (bitsβπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 β wne 2940 βcfv 6543 (class class class)co 7408 0cc0 11109 1c1 11110 + caddc 11112 Β· cmul 11114 / cdiv 11870 2c2 12266 β0cn0 12471 β€cz 12557 βcfl 13754 bitscbits 16359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-inf 9437 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-n0 12472 df-z 12558 df-uz 12822 df-fl 13756 df-seq 13966 df-exp 14027 df-bits 16362 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |