MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsp1o Structured version   Visualization version   GIF version

Theorem bitsp1o 15528
Description: The 𝑀 + 1-th bit of 2𝑁 + 1 is the 𝑀-th bit of 𝑁. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsp1o ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘𝑁)))

Proof of Theorem bitsp1o
StepHypRef Expression
1 2z 11737 . . . . . 6 2 ∈ ℤ
21a1i 11 . . . . 5 (𝑁 ∈ ℤ → 2 ∈ ℤ)
3 id 22 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℤ)
42, 3zmulcld 11816 . . . 4 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℤ)
54peano2zd 11813 . . 3 (𝑁 ∈ ℤ → ((2 · 𝑁) + 1) ∈ ℤ)
6 bitsp1 15526 . . 3 ((((2 · 𝑁) + 1) ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘(⌊‘(((2 · 𝑁) + 1) / 2)))))
75, 6sylan 575 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘(⌊‘(((2 · 𝑁) + 1) / 2)))))
8 2re 11425 . . . . . . . . . . . 12 2 ∈ ℝ
98a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 2 ∈ ℝ)
10 zre 11708 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
119, 10remulcld 10387 . . . . . . . . . 10 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℝ)
1211recnd 10385 . . . . . . . . 9 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℂ)
13 1cnd 10351 . . . . . . . . 9 (𝑁 ∈ ℤ → 1 ∈ ℂ)
14 2cnd 11429 . . . . . . . . 9 (𝑁 ∈ ℤ → 2 ∈ ℂ)
15 2ne0 11462 . . . . . . . . . 10 2 ≠ 0
1615a1i 11 . . . . . . . . 9 (𝑁 ∈ ℤ → 2 ≠ 0)
1712, 13, 14, 16divdird 11165 . . . . . . . 8 (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (((2 · 𝑁) / 2) + (1 / 2)))
18 zcn 11709 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1918, 14, 16divcan3d 11132 . . . . . . . . 9 (𝑁 ∈ ℤ → ((2 · 𝑁) / 2) = 𝑁)
2019oveq1d 6920 . . . . . . . 8 (𝑁 ∈ ℤ → (((2 · 𝑁) / 2) + (1 / 2)) = (𝑁 + (1 / 2)))
2117, 20eqtrd 2861 . . . . . . 7 (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (𝑁 + (1 / 2)))
2221fveq2d 6437 . . . . . 6 (𝑁 ∈ ℤ → (⌊‘(((2 · 𝑁) + 1) / 2)) = (⌊‘(𝑁 + (1 / 2))))
23 0re 10358 . . . . . . . . 9 0 ∈ ℝ
24 halfre 11572 . . . . . . . . 9 (1 / 2) ∈ ℝ
25 halfgt0 11574 . . . . . . . . 9 0 < (1 / 2)
2623, 24, 25ltleii 10479 . . . . . . . 8 0 ≤ (1 / 2)
27 halflt1 11576 . . . . . . . 8 (1 / 2) < 1
2826, 27pm3.2i 464 . . . . . . 7 (0 ≤ (1 / 2) ∧ (1 / 2) < 1)
29 flbi2 12913 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (1 / 2) ∈ ℝ) → ((⌊‘(𝑁 + (1 / 2))) = 𝑁 ↔ (0 ≤ (1 / 2) ∧ (1 / 2) < 1)))
3024, 29mpan2 682 . . . . . . 7 (𝑁 ∈ ℤ → ((⌊‘(𝑁 + (1 / 2))) = 𝑁 ↔ (0 ≤ (1 / 2) ∧ (1 / 2) < 1)))
3128, 30mpbiri 250 . . . . . 6 (𝑁 ∈ ℤ → (⌊‘(𝑁 + (1 / 2))) = 𝑁)
3222, 31eqtrd 2861 . . . . 5 (𝑁 ∈ ℤ → (⌊‘(((2 · 𝑁) + 1) / 2)) = 𝑁)
3332adantr 474 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (⌊‘(((2 · 𝑁) + 1) / 2)) = 𝑁)
3433fveq2d 6437 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (bits‘(⌊‘(((2 · 𝑁) + 1) / 2))) = (bits‘𝑁))
3534eleq2d 2892 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ (bits‘(⌊‘(((2 · 𝑁) + 1) / 2))) ↔ 𝑀 ∈ (bits‘𝑁)))
367, 35bitrd 271 1 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1656  wcel 2164  wne 2999   class class class wbr 4873  cfv 6123  (class class class)co 6905  cr 10251  0cc0 10252  1c1 10253   + caddc 10255   · cmul 10257   < clt 10391  cle 10392   / cdiv 11009  2c2 11406  0cn0 11618  cz 11704  cfl 12886  bitscbits 15514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-sup 8617  df-inf 8618  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-n0 11619  df-z 11705  df-uz 11969  df-fl 12888  df-seq 13096  df-exp 13155  df-bits 15517
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator