MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsp1o Structured version   Visualization version   GIF version

Theorem bitsp1o 15760
Description: The 𝑀 + 1-th bit of 2𝑁 + 1 is the 𝑀-th bit of 𝑁. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsp1o ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘𝑁)))

Proof of Theorem bitsp1o
StepHypRef Expression
1 2z 11993 . . . . . 6 2 ∈ ℤ
21a1i 11 . . . . 5 (𝑁 ∈ ℤ → 2 ∈ ℤ)
3 id 22 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℤ)
42, 3zmulcld 12072 . . . 4 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℤ)
54peano2zd 12069 . . 3 (𝑁 ∈ ℤ → ((2 · 𝑁) + 1) ∈ ℤ)
6 bitsp1 15758 . . 3 ((((2 · 𝑁) + 1) ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘(⌊‘(((2 · 𝑁) + 1) / 2)))))
75, 6sylan 582 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘(⌊‘(((2 · 𝑁) + 1) / 2)))))
8 2re 11690 . . . . . . . . . . . 12 2 ∈ ℝ
98a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 2 ∈ ℝ)
10 zre 11964 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
119, 10remulcld 10649 . . . . . . . . . 10 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℝ)
1211recnd 10647 . . . . . . . . 9 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℂ)
13 1cnd 10614 . . . . . . . . 9 (𝑁 ∈ ℤ → 1 ∈ ℂ)
14 2cnd 11694 . . . . . . . . 9 (𝑁 ∈ ℤ → 2 ∈ ℂ)
15 2ne0 11720 . . . . . . . . . 10 2 ≠ 0
1615a1i 11 . . . . . . . . 9 (𝑁 ∈ ℤ → 2 ≠ 0)
1712, 13, 14, 16divdird 11432 . . . . . . . 8 (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (((2 · 𝑁) / 2) + (1 / 2)))
18 zcn 11965 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1918, 14, 16divcan3d 11399 . . . . . . . . 9 (𝑁 ∈ ℤ → ((2 · 𝑁) / 2) = 𝑁)
2019oveq1d 7148 . . . . . . . 8 (𝑁 ∈ ℤ → (((2 · 𝑁) / 2) + (1 / 2)) = (𝑁 + (1 / 2)))
2117, 20eqtrd 2855 . . . . . . 7 (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (𝑁 + (1 / 2)))
2221fveq2d 6650 . . . . . 6 (𝑁 ∈ ℤ → (⌊‘(((2 · 𝑁) + 1) / 2)) = (⌊‘(𝑁 + (1 / 2))))
23 halfge0 11833 . . . . . . . 8 0 ≤ (1 / 2)
24 halflt1 11834 . . . . . . . 8 (1 / 2) < 1
2523, 24pm3.2i 473 . . . . . . 7 (0 ≤ (1 / 2) ∧ (1 / 2) < 1)
26 halfre 11830 . . . . . . . 8 (1 / 2) ∈ ℝ
27 flbi2 13171 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (1 / 2) ∈ ℝ) → ((⌊‘(𝑁 + (1 / 2))) = 𝑁 ↔ (0 ≤ (1 / 2) ∧ (1 / 2) < 1)))
2826, 27mpan2 689 . . . . . . 7 (𝑁 ∈ ℤ → ((⌊‘(𝑁 + (1 / 2))) = 𝑁 ↔ (0 ≤ (1 / 2) ∧ (1 / 2) < 1)))
2925, 28mpbiri 260 . . . . . 6 (𝑁 ∈ ℤ → (⌊‘(𝑁 + (1 / 2))) = 𝑁)
3022, 29eqtrd 2855 . . . . 5 (𝑁 ∈ ℤ → (⌊‘(((2 · 𝑁) + 1) / 2)) = 𝑁)
3130adantr 483 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (⌊‘(((2 · 𝑁) + 1) / 2)) = 𝑁)
3231fveq2d 6650 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (bits‘(⌊‘(((2 · 𝑁) + 1) / 2))) = (bits‘𝑁))
3332eleq2d 2896 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ (bits‘(⌊‘(((2 · 𝑁) + 1) / 2))) ↔ 𝑀 ∈ (bits‘𝑁)))
347, 33bitrd 281 1 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3006   class class class wbr 5042  cfv 6331  (class class class)co 7133  cr 10514  0cc0 10515  1c1 10516   + caddc 10518   · cmul 10520   < clt 10653  cle 10654   / cdiv 11275  2c2 11671  0cn0 11876  cz 11960  cfl 13144  bitscbits 15746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592  ax-pre-sup 10593
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-2nd 7668  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-er 8267  df-en 8488  df-dom 8489  df-sdom 8490  df-sup 8884  df-inf 8885  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-div 11276  df-nn 11617  df-2 11679  df-n0 11877  df-z 11961  df-uz 12223  df-fl 13146  df-seq 13354  df-exp 13415  df-bits 15749
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator