| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bitsp1o | Structured version Visualization version GIF version | ||
| Description: The 𝑀 + 1-th bit of 2𝑁 + 1 is the 𝑀-th bit of 𝑁. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| Ref | Expression |
|---|---|
| bitsp1o | ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z 12572 | . . . . . 6 ⊢ 2 ∈ ℤ | |
| 2 | 1 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℤ) |
| 3 | id 22 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℤ) | |
| 4 | 2, 3 | zmulcld 12651 | . . . 4 ⊢ (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℤ) |
| 5 | 4 | peano2zd 12648 | . . 3 ⊢ (𝑁 ∈ ℤ → ((2 · 𝑁) + 1) ∈ ℤ) |
| 6 | bitsp1 16408 | . . 3 ⊢ ((((2 · 𝑁) + 1) ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘(⌊‘(((2 · 𝑁) + 1) / 2))))) | |
| 7 | 5, 6 | sylan 580 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘(⌊‘(((2 · 𝑁) + 1) / 2))))) |
| 8 | 2re 12267 | . . . . . . . . . . . 12 ⊢ 2 ∈ ℝ | |
| 9 | 8 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℝ) |
| 10 | zre 12540 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 11 | 9, 10 | remulcld 11211 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℝ) |
| 12 | 11 | recnd 11209 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℂ) |
| 13 | 1cnd 11176 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℂ) | |
| 14 | 2cnd 12271 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℂ) | |
| 15 | 2ne0 12297 | . . . . . . . . . 10 ⊢ 2 ≠ 0 | |
| 16 | 15 | a1i 11 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → 2 ≠ 0) |
| 17 | 12, 13, 14, 16 | divdird 12003 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (((2 · 𝑁) / 2) + (1 / 2))) |
| 18 | zcn 12541 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 19 | 18, 14, 16 | divcan3d 11970 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → ((2 · 𝑁) / 2) = 𝑁) |
| 20 | 19 | oveq1d 7405 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (((2 · 𝑁) / 2) + (1 / 2)) = (𝑁 + (1 / 2))) |
| 21 | 17, 20 | eqtrd 2765 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (𝑁 + (1 / 2))) |
| 22 | 21 | fveq2d 6865 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (⌊‘(((2 · 𝑁) + 1) / 2)) = (⌊‘(𝑁 + (1 / 2)))) |
| 23 | halfge0 12405 | . . . . . . . 8 ⊢ 0 ≤ (1 / 2) | |
| 24 | halflt1 12406 | . . . . . . . 8 ⊢ (1 / 2) < 1 | |
| 25 | 23, 24 | pm3.2i 470 | . . . . . . 7 ⊢ (0 ≤ (1 / 2) ∧ (1 / 2) < 1) |
| 26 | halfre 12402 | . . . . . . . 8 ⊢ (1 / 2) ∈ ℝ | |
| 27 | flbi2 13786 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ (1 / 2) ∈ ℝ) → ((⌊‘(𝑁 + (1 / 2))) = 𝑁 ↔ (0 ≤ (1 / 2) ∧ (1 / 2) < 1))) | |
| 28 | 26, 27 | mpan2 691 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → ((⌊‘(𝑁 + (1 / 2))) = 𝑁 ↔ (0 ≤ (1 / 2) ∧ (1 / 2) < 1))) |
| 29 | 25, 28 | mpbiri 258 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (⌊‘(𝑁 + (1 / 2))) = 𝑁) |
| 30 | 22, 29 | eqtrd 2765 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (⌊‘(((2 · 𝑁) + 1) / 2)) = 𝑁) |
| 31 | 30 | adantr 480 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (⌊‘(((2 · 𝑁) + 1) / 2)) = 𝑁) |
| 32 | 31 | fveq2d 6865 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (bits‘(⌊‘(((2 · 𝑁) + 1) / 2))) = (bits‘𝑁)) |
| 33 | 32 | eleq2d 2815 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ (bits‘(⌊‘(((2 · 𝑁) + 1) / 2))) ↔ 𝑀 ∈ (bits‘𝑁))) |
| 34 | 7, 33 | bitrd 279 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 ℝcr 11074 0cc0 11075 1c1 11076 + caddc 11078 · cmul 11080 < clt 11215 ≤ cle 11216 / cdiv 11842 2c2 12248 ℕ0cn0 12449 ℤcz 12536 ⌊cfl 13759 bitscbits 16396 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-n0 12450 df-z 12537 df-uz 12801 df-fl 13761 df-seq 13974 df-exp 14034 df-bits 16399 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |