Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bitsp1o | Structured version Visualization version GIF version |
Description: The 𝑀 + 1-th bit of 2𝑁 + 1 is the 𝑀-th bit of 𝑁. (Contributed by Mario Carneiro, 5-Sep-2016.) |
Ref | Expression |
---|---|
bitsp1o | ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2z 12352 | . . . . . 6 ⊢ 2 ∈ ℤ | |
2 | 1 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℤ) |
3 | id 22 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℤ) | |
4 | 2, 3 | zmulcld 12432 | . . . 4 ⊢ (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℤ) |
5 | 4 | peano2zd 12429 | . . 3 ⊢ (𝑁 ∈ ℤ → ((2 · 𝑁) + 1) ∈ ℤ) |
6 | bitsp1 16138 | . . 3 ⊢ ((((2 · 𝑁) + 1) ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘(⌊‘(((2 · 𝑁) + 1) / 2))))) | |
7 | 5, 6 | sylan 580 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘(⌊‘(((2 · 𝑁) + 1) / 2))))) |
8 | 2re 12047 | . . . . . . . . . . . 12 ⊢ 2 ∈ ℝ | |
9 | 8 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℝ) |
10 | zre 12323 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
11 | 9, 10 | remulcld 11005 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℝ) |
12 | 11 | recnd 11003 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℂ) |
13 | 1cnd 10970 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℂ) | |
14 | 2cnd 12051 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℂ) | |
15 | 2ne0 12077 | . . . . . . . . . 10 ⊢ 2 ≠ 0 | |
16 | 15 | a1i 11 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → 2 ≠ 0) |
17 | 12, 13, 14, 16 | divdird 11789 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (((2 · 𝑁) / 2) + (1 / 2))) |
18 | zcn 12324 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
19 | 18, 14, 16 | divcan3d 11756 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → ((2 · 𝑁) / 2) = 𝑁) |
20 | 19 | oveq1d 7290 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (((2 · 𝑁) / 2) + (1 / 2)) = (𝑁 + (1 / 2))) |
21 | 17, 20 | eqtrd 2778 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (𝑁 + (1 / 2))) |
22 | 21 | fveq2d 6778 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (⌊‘(((2 · 𝑁) + 1) / 2)) = (⌊‘(𝑁 + (1 / 2)))) |
23 | halfge0 12190 | . . . . . . . 8 ⊢ 0 ≤ (1 / 2) | |
24 | halflt1 12191 | . . . . . . . 8 ⊢ (1 / 2) < 1 | |
25 | 23, 24 | pm3.2i 471 | . . . . . . 7 ⊢ (0 ≤ (1 / 2) ∧ (1 / 2) < 1) |
26 | halfre 12187 | . . . . . . . 8 ⊢ (1 / 2) ∈ ℝ | |
27 | flbi2 13537 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ (1 / 2) ∈ ℝ) → ((⌊‘(𝑁 + (1 / 2))) = 𝑁 ↔ (0 ≤ (1 / 2) ∧ (1 / 2) < 1))) | |
28 | 26, 27 | mpan2 688 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → ((⌊‘(𝑁 + (1 / 2))) = 𝑁 ↔ (0 ≤ (1 / 2) ∧ (1 / 2) < 1))) |
29 | 25, 28 | mpbiri 257 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (⌊‘(𝑁 + (1 / 2))) = 𝑁) |
30 | 22, 29 | eqtrd 2778 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (⌊‘(((2 · 𝑁) + 1) / 2)) = 𝑁) |
31 | 30 | adantr 481 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (⌊‘(((2 · 𝑁) + 1) / 2)) = 𝑁) |
32 | 31 | fveq2d 6778 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (bits‘(⌊‘(((2 · 𝑁) + 1) / 2))) = (bits‘𝑁)) |
33 | 32 | eleq2d 2824 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ (bits‘(⌊‘(((2 · 𝑁) + 1) / 2))) ↔ 𝑀 ∈ (bits‘𝑁))) |
34 | 7, 33 | bitrd 278 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 0cc0 10871 1c1 10872 + caddc 10874 · cmul 10876 < clt 11009 ≤ cle 11010 / cdiv 11632 2c2 12028 ℕ0cn0 12233 ℤcz 12319 ⌊cfl 13510 bitscbits 16126 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12583 df-fl 13512 df-seq 13722 df-exp 13783 df-bits 16129 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |