| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flid | Structured version Visualization version GIF version | ||
| Description: An integer is its own floor. (Contributed by NM, 15-Nov-2004.) |
| Ref | Expression |
|---|---|
| flid | ⊢ (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre 12590 | . . 3 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
| 2 | flle 13814 | . . 3 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ ℤ → (⌊‘𝐴) ≤ 𝐴) |
| 4 | 1 | leidd 11801 | . . 3 ⊢ (𝐴 ∈ ℤ → 𝐴 ≤ 𝐴) |
| 5 | flge 13820 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℤ) → (𝐴 ≤ 𝐴 ↔ 𝐴 ≤ (⌊‘𝐴))) | |
| 6 | 1, 5 | mpancom 688 | . . 3 ⊢ (𝐴 ∈ ℤ → (𝐴 ≤ 𝐴 ↔ 𝐴 ≤ (⌊‘𝐴))) |
| 7 | 4, 6 | mpbid 232 | . 2 ⊢ (𝐴 ∈ ℤ → 𝐴 ≤ (⌊‘𝐴)) |
| 8 | reflcl 13811 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ) | |
| 9 | 1, 8 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℤ → (⌊‘𝐴) ∈ ℝ) |
| 10 | 9, 1 | letri3d 11375 | . 2 ⊢ (𝐴 ∈ ℤ → ((⌊‘𝐴) = 𝐴 ↔ ((⌊‘𝐴) ≤ 𝐴 ∧ 𝐴 ≤ (⌊‘𝐴)))) |
| 11 | 3, 7, 10 | mpbir2and 713 | 1 ⊢ (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ‘cfv 6530 ℝcr 11126 ≤ cle 11268 ℤcz 12586 ⌊cfl 13805 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9452 df-inf 9453 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-n0 12500 df-z 12587 df-uz 12851 df-fl 13807 |
| This theorem is referenced by: flidm 13824 flidz 13825 ceilid 13866 fleqceilz 13869 zmod10 13902 bits0 16445 bitsp1e 16449 bitsuz 16491 phiprmpw 16793 fldivp1 16915 prmreclem4 16937 dvfsumlem1 25982 dvfsumlem3 25985 ppival2 27088 ppival2g 27089 chtprm 27113 chtnprm 27114 chpp1 27115 chtdif 27118 cht1 27125 chp1 27127 prmorcht 27138 logfaclbnd 27183 logfacbnd3 27184 logexprlim 27186 rplogsumlem2 27446 log2sumbnd 27505 logdivbnd 27517 pntrsumbnd 27527 pntrlog2bndlem1 27538 pntrlog2bndlem4 27541 chpvalz 34606 chtvalz 34607 dnizphlfeqhlf 36440 lefldiveq 45269 fourierdlem65 46148 zefldiv2ALTV 47623 bits0ALTV 47641 zefldiv2 48458 flnn0div2ge 48461 flnn0ohalf 48462 nnlog2ge0lt1 48494 logbpw2m1 48495 blenpw2 48506 blen1 48512 blen2 48513 blengt1fldiv2p1 48521 dignn0fr 48529 dig0 48534 digexp 48535 0dig2nn0e 48540 0dig2nn0o 48541 |
| Copyright terms: Public domain | W3C validator |