![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > flid | Structured version Visualization version GIF version |
Description: An integer is its own floor. (Contributed by NM, 15-Nov-2004.) |
Ref | Expression |
---|---|
flid | ⊢ (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 12593 | . . 3 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
2 | flle 13797 | . . 3 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ ℤ → (⌊‘𝐴) ≤ 𝐴) |
4 | 1 | leidd 11811 | . . 3 ⊢ (𝐴 ∈ ℤ → 𝐴 ≤ 𝐴) |
5 | flge 13803 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℤ) → (𝐴 ≤ 𝐴 ↔ 𝐴 ≤ (⌊‘𝐴))) | |
6 | 1, 5 | mpancom 687 | . . 3 ⊢ (𝐴 ∈ ℤ → (𝐴 ≤ 𝐴 ↔ 𝐴 ≤ (⌊‘𝐴))) |
7 | 4, 6 | mpbid 231 | . 2 ⊢ (𝐴 ∈ ℤ → 𝐴 ≤ (⌊‘𝐴)) |
8 | reflcl 13794 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ) | |
9 | 1, 8 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℤ → (⌊‘𝐴) ∈ ℝ) |
10 | 9, 1 | letri3d 11387 | . 2 ⊢ (𝐴 ∈ ℤ → ((⌊‘𝐴) = 𝐴 ↔ ((⌊‘𝐴) ≤ 𝐴 ∧ 𝐴 ≤ (⌊‘𝐴)))) |
11 | 3, 7, 10 | mpbir2and 712 | 1 ⊢ (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 class class class wbr 5148 ‘cfv 6548 ℝcr 11138 ≤ cle 11280 ℤcz 12589 ⌊cfl 13788 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-pre-sup 11217 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9466 df-inf 9467 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-n0 12504 df-z 12590 df-uz 12854 df-fl 13790 |
This theorem is referenced by: flidm 13807 flidz 13808 ceilid 13849 fleqceilz 13852 zmod10 13885 bits0 16403 bitsp1e 16407 bitsuz 16449 phiprmpw 16745 fldivp1 16866 prmreclem4 16888 dvfsumlem1 25973 dvfsumlem3 25976 ppival2 27073 ppival2g 27074 chtprm 27098 chtnprm 27099 chpp1 27100 chtdif 27103 cht1 27110 chp1 27112 prmorcht 27123 logfaclbnd 27168 logfacbnd3 27169 logexprlim 27171 rplogsumlem2 27431 log2sumbnd 27490 logdivbnd 27502 pntrsumbnd 27512 pntrlog2bndlem1 27523 pntrlog2bndlem4 27526 chpvalz 34260 chtvalz 34261 dnizphlfeqhlf 35951 lefldiveq 44674 fourierdlem65 45559 zefldiv2ALTV 47001 bits0ALTV 47019 zefldiv2 47603 flnn0div2ge 47606 flnn0ohalf 47607 nnlog2ge0lt1 47639 logbpw2m1 47640 blenpw2 47651 blen1 47657 blen2 47658 blengt1fldiv2p1 47666 dignn0fr 47674 dig0 47679 digexp 47680 0dig2nn0e 47685 0dig2nn0o 47686 |
Copyright terms: Public domain | W3C validator |