MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flid Structured version   Visualization version   GIF version

Theorem flid 13806
Description: An integer is its own floor. (Contributed by NM, 15-Nov-2004.)
Assertion
Ref Expression
flid (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴)

Proof of Theorem flid
StepHypRef Expression
1 zre 12593 . . 3 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
2 flle 13797 . . 3 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
31, 2syl 17 . 2 (𝐴 ∈ ℤ → (⌊‘𝐴) ≤ 𝐴)
41leidd 11811 . . 3 (𝐴 ∈ ℤ → 𝐴𝐴)
5 flge 13803 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℤ) → (𝐴𝐴𝐴 ≤ (⌊‘𝐴)))
61, 5mpancom 687 . . 3 (𝐴 ∈ ℤ → (𝐴𝐴𝐴 ≤ (⌊‘𝐴)))
74, 6mpbid 231 . 2 (𝐴 ∈ ℤ → 𝐴 ≤ (⌊‘𝐴))
8 reflcl 13794 . . . 4 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
91, 8syl 17 . . 3 (𝐴 ∈ ℤ → (⌊‘𝐴) ∈ ℝ)
109, 1letri3d 11387 . 2 (𝐴 ∈ ℤ → ((⌊‘𝐴) = 𝐴 ↔ ((⌊‘𝐴) ≤ 𝐴𝐴 ≤ (⌊‘𝐴))))
113, 7, 10mpbir2and 712 1 (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1534  wcel 2099   class class class wbr 5148  cfv 6548  cr 11138  cle 11280  cz 12589  cfl 13788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9466  df-inf 9467  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-n0 12504  df-z 12590  df-uz 12854  df-fl 13790
This theorem is referenced by:  flidm  13807  flidz  13808  ceilid  13849  fleqceilz  13852  zmod10  13885  bits0  16403  bitsp1e  16407  bitsuz  16449  phiprmpw  16745  fldivp1  16866  prmreclem4  16888  dvfsumlem1  25973  dvfsumlem3  25976  ppival2  27073  ppival2g  27074  chtprm  27098  chtnprm  27099  chpp1  27100  chtdif  27103  cht1  27110  chp1  27112  prmorcht  27123  logfaclbnd  27168  logfacbnd3  27169  logexprlim  27171  rplogsumlem2  27431  log2sumbnd  27490  logdivbnd  27502  pntrsumbnd  27512  pntrlog2bndlem1  27523  pntrlog2bndlem4  27526  chpvalz  34260  chtvalz  34261  dnizphlfeqhlf  35951  lefldiveq  44674  fourierdlem65  45559  zefldiv2ALTV  47001  bits0ALTV  47019  zefldiv2  47603  flnn0div2ge  47606  flnn0ohalf  47607  nnlog2ge0lt1  47639  logbpw2m1  47640  blenpw2  47651  blen1  47657  blen2  47658  blengt1fldiv2p1  47666  dignn0fr  47674  dig0  47679  digexp  47680  0dig2nn0e  47685  0dig2nn0o  47686
  Copyright terms: Public domain W3C validator