|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > flid | Structured version Visualization version GIF version | ||
| Description: An integer is its own floor. (Contributed by NM, 15-Nov-2004.) | 
| Ref | Expression | 
|---|---|
| flid | ⊢ (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | zre 12617 | . . 3 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
| 2 | flle 13839 | . . 3 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ ℤ → (⌊‘𝐴) ≤ 𝐴) | 
| 4 | 1 | leidd 11829 | . . 3 ⊢ (𝐴 ∈ ℤ → 𝐴 ≤ 𝐴) | 
| 5 | flge 13845 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℤ) → (𝐴 ≤ 𝐴 ↔ 𝐴 ≤ (⌊‘𝐴))) | |
| 6 | 1, 5 | mpancom 688 | . . 3 ⊢ (𝐴 ∈ ℤ → (𝐴 ≤ 𝐴 ↔ 𝐴 ≤ (⌊‘𝐴))) | 
| 7 | 4, 6 | mpbid 232 | . 2 ⊢ (𝐴 ∈ ℤ → 𝐴 ≤ (⌊‘𝐴)) | 
| 8 | reflcl 13836 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ) | |
| 9 | 1, 8 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℤ → (⌊‘𝐴) ∈ ℝ) | 
| 10 | 9, 1 | letri3d 11403 | . 2 ⊢ (𝐴 ∈ ℤ → ((⌊‘𝐴) = 𝐴 ↔ ((⌊‘𝐴) ≤ 𝐴 ∧ 𝐴 ≤ (⌊‘𝐴)))) | 
| 11 | 3, 7, 10 | mpbir2and 713 | 1 ⊢ (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 class class class wbr 5143 ‘cfv 6561 ℝcr 11154 ≤ cle 11296 ℤcz 12613 ⌊cfl 13830 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 df-fl 13832 | 
| This theorem is referenced by: flidm 13849 flidz 13850 ceilid 13891 fleqceilz 13894 zmod10 13927 bits0 16465 bitsp1e 16469 bitsuz 16511 phiprmpw 16813 fldivp1 16935 prmreclem4 16957 dvfsumlem1 26066 dvfsumlem3 26069 ppival2 27171 ppival2g 27172 chtprm 27196 chtnprm 27197 chpp1 27198 chtdif 27201 cht1 27208 chp1 27210 prmorcht 27221 logfaclbnd 27266 logfacbnd3 27267 logexprlim 27269 rplogsumlem2 27529 log2sumbnd 27588 logdivbnd 27600 pntrsumbnd 27610 pntrlog2bndlem1 27621 pntrlog2bndlem4 27624 chpvalz 34643 chtvalz 34644 dnizphlfeqhlf 36477 lefldiveq 45304 fourierdlem65 46186 zefldiv2ALTV 47648 bits0ALTV 47666 zefldiv2 48451 flnn0div2ge 48454 flnn0ohalf 48455 nnlog2ge0lt1 48487 logbpw2m1 48488 blenpw2 48499 blen1 48505 blen2 48506 blengt1fldiv2p1 48514 dignn0fr 48522 dig0 48527 digexp 48528 0dig2nn0e 48533 0dig2nn0o 48534 | 
| Copyright terms: Public domain | W3C validator |