MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flid Structured version   Visualization version   GIF version

Theorem flid 13848
Description: An integer is its own floor. (Contributed by NM, 15-Nov-2004.)
Assertion
Ref Expression
flid (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴)

Proof of Theorem flid
StepHypRef Expression
1 zre 12617 . . 3 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
2 flle 13839 . . 3 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
31, 2syl 17 . 2 (𝐴 ∈ ℤ → (⌊‘𝐴) ≤ 𝐴)
41leidd 11829 . . 3 (𝐴 ∈ ℤ → 𝐴𝐴)
5 flge 13845 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℤ) → (𝐴𝐴𝐴 ≤ (⌊‘𝐴)))
61, 5mpancom 688 . . 3 (𝐴 ∈ ℤ → (𝐴𝐴𝐴 ≤ (⌊‘𝐴)))
74, 6mpbid 232 . 2 (𝐴 ∈ ℤ → 𝐴 ≤ (⌊‘𝐴))
8 reflcl 13836 . . . 4 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
91, 8syl 17 . . 3 (𝐴 ∈ ℤ → (⌊‘𝐴) ∈ ℝ)
109, 1letri3d 11403 . 2 (𝐴 ∈ ℤ → ((⌊‘𝐴) = 𝐴 ↔ ((⌊‘𝐴) ≤ 𝐴𝐴 ≤ (⌊‘𝐴))))
113, 7, 10mpbir2and 713 1 (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108   class class class wbr 5143  cfv 6561  cr 11154  cle 11296  cz 12613  cfl 13830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fl 13832
This theorem is referenced by:  flidm  13849  flidz  13850  ceilid  13891  fleqceilz  13894  zmod10  13927  bits0  16465  bitsp1e  16469  bitsuz  16511  phiprmpw  16813  fldivp1  16935  prmreclem4  16957  dvfsumlem1  26066  dvfsumlem3  26069  ppival2  27171  ppival2g  27172  chtprm  27196  chtnprm  27197  chpp1  27198  chtdif  27201  cht1  27208  chp1  27210  prmorcht  27221  logfaclbnd  27266  logfacbnd3  27267  logexprlim  27269  rplogsumlem2  27529  log2sumbnd  27588  logdivbnd  27600  pntrsumbnd  27610  pntrlog2bndlem1  27621  pntrlog2bndlem4  27624  chpvalz  34643  chtvalz  34644  dnizphlfeqhlf  36477  lefldiveq  45304  fourierdlem65  46186  zefldiv2ALTV  47648  bits0ALTV  47666  zefldiv2  48451  flnn0div2ge  48454  flnn0ohalf  48455  nnlog2ge0lt1  48487  logbpw2m1  48488  blenpw2  48499  blen1  48505  blen2  48506  blengt1fldiv2p1  48514  dignn0fr  48522  dig0  48527  digexp  48528  0dig2nn0e  48533  0dig2nn0o  48534
  Copyright terms: Public domain W3C validator