MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatw2s1p2 Structured version   Visualization version   GIF version

Theorem ccatw2s1p2 13835
Description: Extract the second of two single symbols concatenated with a word. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Proof shortened by AV, 1-May-2020.)
Assertion
Ref Expression
ccatw2s1p2 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) ∧ (𝑋𝑉𝑌𝑉)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 + 1)) = 𝑌)

Proof of Theorem ccatw2s1p2
StepHypRef Expression
1 ccatws1cl 13814 . . 3 ((𝑊 ∈ Word 𝑉𝑋𝑉) → (𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑉)
21ad2ant2r 743 . 2 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) ∧ (𝑋𝑉𝑌𝑉)) → (𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑉)
3 simprr 769 . 2 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) ∧ (𝑋𝑉𝑌𝑉)) → 𝑌𝑉)
4 ccatws1len 13818 . . . 4 (𝑊 ∈ Word 𝑉 → (♯‘(𝑊 ++ ⟨“𝑋”⟩)) = ((♯‘𝑊) + 1))
54ad2antrr 722 . . 3 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) ∧ (𝑋𝑉𝑌𝑉)) → (♯‘(𝑊 ++ ⟨“𝑋”⟩)) = ((♯‘𝑊) + 1))
6 oveq1 7026 . . . 4 ((♯‘𝑊) = 𝑁 → ((♯‘𝑊) + 1) = (𝑁 + 1))
76ad2antlr 723 . . 3 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) ∧ (𝑋𝑉𝑌𝑉)) → ((♯‘𝑊) + 1) = (𝑁 + 1))
85, 7eqtr2d 2831 . 2 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) ∧ (𝑋𝑉𝑌𝑉)) → (𝑁 + 1) = (♯‘(𝑊 ++ ⟨“𝑋”⟩)))
9 ccats1val2 13825 . 2 (((𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑉𝑌𝑉 ∧ (𝑁 + 1) = (♯‘(𝑊 ++ ⟨“𝑋”⟩))) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 + 1)) = 𝑌)
102, 3, 8, 9syl3anc 1364 1 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) ∧ (𝑋𝑉𝑌𝑉)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 + 1)) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1522  wcel 2080  cfv 6228  (class class class)co 7019  1c1 10387   + caddc 10389  chash 13540  Word cword 13707   ++ cconcat 13768  ⟨“cs1 13793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1778  ax-4 1792  ax-5 1889  ax-6 1948  ax-7 1993  ax-8 2082  ax-9 2090  ax-10 2111  ax-11 2125  ax-12 2140  ax-13 2343  ax-ext 2768  ax-rep 5084  ax-sep 5097  ax-nul 5104  ax-pow 5160  ax-pr 5224  ax-un 7322  ax-cnex 10442  ax-resscn 10443  ax-1cn 10444  ax-icn 10445  ax-addcl 10446  ax-addrcl 10447  ax-mulcl 10448  ax-mulrcl 10449  ax-mulcom 10450  ax-addass 10451  ax-mulass 10452  ax-distr 10453  ax-i2m1 10454  ax-1ne0 10455  ax-1rid 10456  ax-rnegex 10457  ax-rrecex 10458  ax-cnre 10459  ax-pre-lttri 10460  ax-pre-lttrn 10461  ax-pre-ltadd 10462  ax-pre-mulgt0 10463
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1763  df-nf 1767  df-sb 2042  df-mo 2575  df-eu 2611  df-clab 2775  df-cleq 2787  df-clel 2862  df-nfc 2934  df-ne 2984  df-nel 3090  df-ral 3109  df-rex 3110  df-reu 3111  df-rab 3113  df-v 3438  df-sbc 3708  df-csb 3814  df-dif 3864  df-un 3866  df-in 3868  df-ss 3876  df-pss 3878  df-nul 4214  df-if 4384  df-pw 4457  df-sn 4475  df-pr 4477  df-tp 4479  df-op 4481  df-uni 4748  df-int 4785  df-iun 4829  df-br 4965  df-opab 5027  df-mpt 5044  df-tr 5067  df-id 5351  df-eprel 5356  df-po 5365  df-so 5366  df-fr 5405  df-we 5407  df-xp 5452  df-rel 5453  df-cnv 5454  df-co 5455  df-dm 5456  df-rn 5457  df-res 5458  df-ima 5459  df-pred 6026  df-ord 6072  df-on 6073  df-lim 6074  df-suc 6075  df-iota 6192  df-fun 6230  df-fn 6231  df-f 6232  df-f1 6233  df-fo 6234  df-f1o 6235  df-fv 6236  df-riota 6980  df-ov 7022  df-oprab 7023  df-mpo 7024  df-om 7440  df-1st 7548  df-2nd 7549  df-wrecs 7801  df-recs 7863  df-rdg 7901  df-1o 7956  df-oadd 7960  df-er 8142  df-en 8361  df-dom 8362  df-sdom 8363  df-fin 8364  df-card 9217  df-pnf 10526  df-mnf 10527  df-xr 10528  df-ltxr 10529  df-le 10530  df-sub 10721  df-neg 10722  df-nn 11489  df-n0 11748  df-z 11832  df-uz 12094  df-fz 12743  df-fzo 12884  df-hash 13541  df-word 13708  df-concat 13769  df-s1 13794
This theorem is referenced by:  clwwlknonex2lem2  27569  numclwwlk1lem2foalem  27814  numclwwlk1lem2fo  27821
  Copyright terms: Public domain W3C validator