MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatw2s1p1 Structured version   Visualization version   GIF version

Theorem ccatw2s1p1 14591
Description: Extract the symbol of the first singleton word of a word concatenated with this singleton word and another singleton word. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Proof shortened by AV, 1-May-2020.) (Revised by AV, 1-May-2020.) (Revised by AV, 29-Jan-2024.)
Assertion
Ref Expression
ccatw2s1p1 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁𝑋𝑉) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑁) = 𝑋)

Proof of Theorem ccatw2s1p1
StepHypRef Expression
1 ccatws1cl 14571 . . . 4 ((𝑊 ∈ Word 𝑉𝑋𝑉) → (𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑉)
213adant2 1130 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁𝑋𝑉) → (𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑉)
3 lencl 14488 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
4 fzonn0p1 13714 . . . . . . 7 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ (0..^((♯‘𝑊) + 1)))
53, 4syl 17 . . . . . 6 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ (0..^((♯‘𝑊) + 1)))
65adantr 480 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) → (♯‘𝑊) ∈ (0..^((♯‘𝑊) + 1)))
7 simpr 484 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) → (♯‘𝑊) = 𝑁)
87eqcomd 2737 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) → 𝑁 = (♯‘𝑊))
9 ccatws1len 14575 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (♯‘(𝑊 ++ ⟨“𝑋”⟩)) = ((♯‘𝑊) + 1))
109adantr 480 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) → (♯‘(𝑊 ++ ⟨“𝑋”⟩)) = ((♯‘𝑊) + 1))
1110oveq2d 7428 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) → (0..^(♯‘(𝑊 ++ ⟨“𝑋”⟩))) = (0..^((♯‘𝑊) + 1)))
126, 8, 113eltr4d 2847 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) → 𝑁 ∈ (0..^(♯‘(𝑊 ++ ⟨“𝑋”⟩))))
13123adant3 1131 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁𝑋𝑉) → 𝑁 ∈ (0..^(♯‘(𝑊 ++ ⟨“𝑋”⟩))))
14 ccats1val1 14581 . . 3 (((𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑉𝑁 ∈ (0..^(♯‘(𝑊 ++ ⟨“𝑋”⟩)))) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑁) = ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁))
152, 13, 14syl2anc 583 . 2 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁𝑋𝑉) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑁) = ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁))
16 simp1 1135 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁𝑋𝑉) → 𝑊 ∈ Word 𝑉)
17 simp3 1137 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁𝑋𝑉) → 𝑋𝑉)
18 eqcom 2738 . . . . 5 ((♯‘𝑊) = 𝑁𝑁 = (♯‘𝑊))
1918biimpi 215 . . . 4 ((♯‘𝑊) = 𝑁𝑁 = (♯‘𝑊))
20193ad2ant2 1133 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁𝑋𝑉) → 𝑁 = (♯‘𝑊))
21 ccats1val2 14582 . . 3 ((𝑊 ∈ Word 𝑉𝑋𝑉𝑁 = (♯‘𝑊)) → ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) = 𝑋)
2216, 17, 20, 21syl3anc 1370 . 2 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁𝑋𝑉) → ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) = 𝑋)
2315, 22eqtrd 2771 1 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁𝑋𝑉) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑁) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  cfv 6544  (class class class)co 7412  0cc0 11113  1c1 11114   + caddc 11116  0cn0 12477  ..^cfzo 13632  chash 14295  Word cword 14469   ++ cconcat 14525  ⟨“cs1 14550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-1st 7978  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-1o 8469  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-fin 8946  df-card 9937  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-n0 12478  df-z 12564  df-uz 12828  df-fz 13490  df-fzo 13633  df-hash 14296  df-word 14470  df-concat 14526  df-s1 14551
This theorem is referenced by:  clwwlknonex2lem2  29625  numclwwlk1lem2foalem  29868
  Copyright terms: Public domain W3C validator