| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ccatw2s1p1 | Structured version Visualization version GIF version | ||
| Description: Extract the symbol of the first singleton word of a word concatenated with this singleton word and another singleton word. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Proof shortened by AV, 1-May-2020.) (Revised by AV, 1-May-2020.) (Revised by AV, 29-Jan-2024.) |
| Ref | Expression |
|---|---|
| ccatw2s1p1 | ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ 𝑋 ∈ 𝑉) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘𝑁) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccatws1cl 14588 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑉) → (𝑊 ++ 〈“𝑋”〉) ∈ Word 𝑉) | |
| 2 | 1 | 3adant2 1131 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ 𝑋 ∈ 𝑉) → (𝑊 ++ 〈“𝑋”〉) ∈ Word 𝑉) |
| 3 | lencl 14505 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0) | |
| 4 | fzonn0p1 13710 | . . . . . . 7 ⊢ ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ (0..^((♯‘𝑊) + 1))) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ (0..^((♯‘𝑊) + 1))) |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) → (♯‘𝑊) ∈ (0..^((♯‘𝑊) + 1))) |
| 7 | simpr 484 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) → (♯‘𝑊) = 𝑁) | |
| 8 | 7 | eqcomd 2736 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) → 𝑁 = (♯‘𝑊)) |
| 9 | ccatws1len 14592 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘(𝑊 ++ 〈“𝑋”〉)) = ((♯‘𝑊) + 1)) | |
| 10 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) → (♯‘(𝑊 ++ 〈“𝑋”〉)) = ((♯‘𝑊) + 1)) |
| 11 | 10 | oveq2d 7406 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) → (0..^(♯‘(𝑊 ++ 〈“𝑋”〉))) = (0..^((♯‘𝑊) + 1))) |
| 12 | 6, 8, 11 | 3eltr4d 2844 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) → 𝑁 ∈ (0..^(♯‘(𝑊 ++ 〈“𝑋”〉)))) |
| 13 | 12 | 3adant3 1132 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ 𝑋 ∈ 𝑉) → 𝑁 ∈ (0..^(♯‘(𝑊 ++ 〈“𝑋”〉)))) |
| 14 | ccats1val1 14598 | . . 3 ⊢ (((𝑊 ++ 〈“𝑋”〉) ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘(𝑊 ++ 〈“𝑋”〉)))) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘𝑁) = ((𝑊 ++ 〈“𝑋”〉)‘𝑁)) | |
| 15 | 2, 13, 14 | syl2anc 584 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ 𝑋 ∈ 𝑉) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘𝑁) = ((𝑊 ++ 〈“𝑋”〉)‘𝑁)) |
| 16 | simp1 1136 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ Word 𝑉) | |
| 17 | simp3 1138 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
| 18 | eqcom 2737 | . . . . 5 ⊢ ((♯‘𝑊) = 𝑁 ↔ 𝑁 = (♯‘𝑊)) | |
| 19 | 18 | biimpi 216 | . . . 4 ⊢ ((♯‘𝑊) = 𝑁 → 𝑁 = (♯‘𝑊)) |
| 20 | 19 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ 𝑋 ∈ 𝑉) → 𝑁 = (♯‘𝑊)) |
| 21 | ccats1val2 14599 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 = (♯‘𝑊)) → ((𝑊 ++ 〈“𝑋”〉)‘𝑁) = 𝑋) | |
| 22 | 16, 17, 20, 21 | syl3anc 1373 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ 𝑋 ∈ 𝑉) → ((𝑊 ++ 〈“𝑋”〉)‘𝑁) = 𝑋) |
| 23 | 15, 22 | eqtrd 2765 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ 𝑋 ∈ 𝑉) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘𝑁) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 0cc0 11075 1c1 11076 + caddc 11078 ℕ0cn0 12449 ..^cfzo 13622 ♯chash 14302 Word cword 14485 ++ cconcat 14542 〈“cs1 14567 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-hash 14303 df-word 14486 df-concat 14543 df-s1 14568 |
| This theorem is referenced by: clwwlknonex2lem2 30044 numclwwlk1lem2foalem 30287 |
| Copyright terms: Public domain | W3C validator |