MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfmptc Structured version   Visualization version   GIF version

Theorem cncfmptc 22921
Description: A constant function is a continuous function on . (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Sep-2015.)
Assertion
Ref Expression
cncfmptc ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥𝑆𝐴) ∈ (𝑆cn𝑇))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑆   𝑥,𝑇

Proof of Theorem cncfmptc
StepHypRef Expression
1 eqid 2802 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21cnfldtopon 22793 . . . 4 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
3 simp2 1160 . . . 4 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → 𝑆 ⊆ ℂ)
4 resttopon 21173 . . . 4 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
52, 3, 4sylancr 577 . . 3 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
6 simp3 1161 . . . 4 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → 𝑇 ⊆ ℂ)
7 resttopon 21173 . . . 4 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑇 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑇) ∈ (TopOn‘𝑇))
82, 6, 7sylancr 577 . . 3 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑇) ∈ (TopOn‘𝑇))
9 simp1 1159 . . 3 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → 𝐴𝑇)
105, 8, 9cnmptc 21673 . 2 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥𝑆𝐴) ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn ((TopOpen‘ℂfld) ↾t 𝑇)))
11 eqid 2802 . . . 4 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
12 eqid 2802 . . . 4 ((TopOpen‘ℂfld) ↾t 𝑇) = ((TopOpen‘ℂfld) ↾t 𝑇)
131, 11, 12cncfcn 22919 . . 3 ((𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑆cn𝑇) = (((TopOpen‘ℂfld) ↾t 𝑆) Cn ((TopOpen‘ℂfld) ↾t 𝑇)))
14133adant1 1153 . 2 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑆cn𝑇) = (((TopOpen‘ℂfld) ↾t 𝑆) Cn ((TopOpen‘ℂfld) ↾t 𝑇)))
1510, 14eleqtrrd 2884 1 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥𝑆𝐴) ∈ (𝑆cn𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1100   = wceq 1637  wcel 2155  wss 3763  cmpt 4916  cfv 6095  (class class class)co 6868  cc 10213  t crest 16280  TopOpenctopn 16281  fldccnfld 19948  TopOnctopon 20922   Cn ccn 21236  cnccncf 22886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2067  ax-7 2103  ax-8 2157  ax-9 2164  ax-10 2184  ax-11 2200  ax-12 2213  ax-13 2419  ax-ext 2781  ax-rep 4957  ax-sep 4968  ax-nul 4977  ax-pow 5029  ax-pr 5090  ax-un 7173  ax-cnex 10271  ax-resscn 10272  ax-1cn 10273  ax-icn 10274  ax-addcl 10275  ax-addrcl 10276  ax-mulcl 10277  ax-mulrcl 10278  ax-mulcom 10279  ax-addass 10280  ax-mulass 10281  ax-distr 10282  ax-i2m1 10283  ax-1ne0 10284  ax-1rid 10285  ax-rnegex 10286  ax-rrecex 10287  ax-cnre 10288  ax-pre-lttri 10289  ax-pre-lttrn 10290  ax-pre-ltadd 10291  ax-pre-mulgt0 10292  ax-pre-sup 10293
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2060  df-eu 2633  df-mo 2634  df-clab 2789  df-cleq 2795  df-clel 2798  df-nfc 2933  df-ne 2975  df-nel 3078  df-ral 3097  df-rex 3098  df-reu 3099  df-rmo 3100  df-rab 3101  df-v 3389  df-sbc 3628  df-csb 3723  df-dif 3766  df-un 3768  df-in 3770  df-ss 3777  df-pss 3779  df-nul 4111  df-if 4274  df-pw 4347  df-sn 4365  df-pr 4367  df-tp 4369  df-op 4371  df-uni 4624  df-int 4663  df-iun 4707  df-br 4838  df-opab 4900  df-mpt 4917  df-tr 4940  df-id 5213  df-eprel 5218  df-po 5226  df-so 5227  df-fr 5264  df-we 5266  df-xp 5311  df-rel 5312  df-cnv 5313  df-co 5314  df-dm 5315  df-rn 5316  df-res 5317  df-ima 5318  df-pred 5887  df-ord 5933  df-on 5934  df-lim 5935  df-suc 5936  df-iota 6058  df-fun 6097  df-fn 6098  df-f 6099  df-f1 6100  df-fo 6101  df-f1o 6102  df-fv 6103  df-riota 6829  df-ov 6871  df-oprab 6872  df-mpt2 6873  df-om 7290  df-1st 7392  df-2nd 7393  df-wrecs 7636  df-recs 7698  df-rdg 7736  df-1o 7790  df-oadd 7794  df-er 7973  df-map 8088  df-en 8187  df-dom 8188  df-sdom 8189  df-fin 8190  df-fi 8550  df-sup 8581  df-inf 8582  df-pnf 10355  df-mnf 10356  df-xr 10357  df-ltxr 10358  df-le 10359  df-sub 10547  df-neg 10548  df-div 10964  df-nn 11300  df-2 11358  df-3 11359  df-4 11360  df-5 11361  df-6 11362  df-7 11363  df-8 11364  df-9 11365  df-n0 11554  df-z 11638  df-dec 11754  df-uz 11899  df-q 12002  df-rp 12041  df-xneg 12156  df-xadd 12157  df-xmul 12158  df-fz 12544  df-seq 13019  df-exp 13078  df-cj 14056  df-re 14057  df-im 14058  df-sqrt 14192  df-abs 14193  df-struct 16064  df-ndx 16065  df-slot 16066  df-base 16068  df-plusg 16160  df-mulr 16161  df-starv 16162  df-tset 16166  df-ple 16167  df-ds 16169  df-unif 16170  df-rest 16282  df-topn 16283  df-topgen 16303  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-cnfld 19949  df-top 20906  df-topon 20923  df-topsp 20945  df-bases 20958  df-cn 21239  df-cnp 21240  df-xms 22332  df-ms 22333  df-cncf 22888
This theorem is referenced by:  addccncf  22926  negcncf  22928  dvidlem  23887  dvcnp2  23891  dvmulbr  23910  cmvth  23962  dvlipcn  23965  lhop1lem  23984  dvfsumle  23992  dvfsumge  23993  dvfsumabs  23994  dvfsumlem2  23998  taylthlem2  24336  loglesqrt  24707  lgamgulmlem2  24964  pntlem3  25506  efmul2picn  30993  circlemeth  31037  logdivsqrle  31047  ftc1cnnclem  33789  ftc2nc  33800  areacirclem3  33808  areacirclem4  33809  areacirc  33811  constcncf  33863  sub1cncf  33865  sub2cncf  33866  itgpowd  38294  arearect  38295  areaquad  38296  constcncfg  40558  add1cncf  40589  add2cncf  40590  sub1cncfd  40591  sub2cncfd  40592  itgsbtaddcnst  40671  dirkeritg  40792
  Copyright terms: Public domain W3C validator