MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znle2 Structured version   Visualization version   GIF version

Theorem znle2 20551
Description: The ordering of the ℤ/n structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znle2.y 𝑌 = (ℤ/nℤ‘𝑁)
znle2.f 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)
znle2.w 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
znle2.l = (le‘𝑌)
Assertion
Ref Expression
znle2 (𝑁 ∈ ℕ0 = ((𝐹 ∘ ≤ ) ∘ 𝐹))

Proof of Theorem znle2
StepHypRef Expression
1 eqid 2739 . . 3 (RSpan‘ℤring) = (RSpan‘ℤring)
2 eqid 2739 . . 3 (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))
3 znle2.y . . 3 𝑌 = (ℤ/nℤ‘𝑁)
4 eqid 2739 . . 3 ((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) = ((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊)
5 znle2.w . . 3 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
6 znle2.l . . 3 = (le‘𝑌)
71, 2, 3, 4, 5, 6znle 20534 . 2 (𝑁 ∈ ℕ0 = ((((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) ∘ ≤ ) ∘ ((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊)))
81, 2, 3znzrh 20540 . . . . . 6 (𝑁 ∈ ℕ0 → (ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (ℤRHom‘𝑌))
98reseq1d 5868 . . . . 5 (𝑁 ∈ ℕ0 → ((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) = ((ℤRHom‘𝑌) ↾ 𝑊))
10 znle2.f . . . . 5 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)
119, 10eqtr4di 2798 . . . 4 (𝑁 ∈ ℕ0 → ((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) = 𝐹)
1211coeq1d 5748 . . 3 (𝑁 ∈ ℕ0 → (((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) ∘ ≤ ) = (𝐹 ∘ ≤ ))
1311cnveqd 5762 . . 3 (𝑁 ∈ ℕ0((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) = 𝐹)
1412, 13coeq12d 5751 . 2 (𝑁 ∈ ℕ0 → ((((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) ∘ ≤ ) ∘ ((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊)) = ((𝐹 ∘ ≤ ) ∘ 𝐹))
157, 14eqtrd 2779 1 (𝑁 ∈ ℕ0 = ((𝐹 ∘ ≤ ) ∘ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2112  ifcif 4456  {csn 4558  ccnv 5568  cres 5571  ccom 5573  cfv 6401  (class class class)co 7235  0cc0 10759  cle 10898  0cn0 12120  cz 12206  ..^cfzo 13268  lecple 16842   /s cqus 17043   ~QG cqg 18572  RSpancrsp 20241  ringzring 20468  ℤRHomczrh 20499  ℤ/nczn 20502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5196  ax-sep 5209  ax-nul 5216  ax-pow 5275  ax-pr 5339  ax-un 7545  ax-cnex 10815  ax-resscn 10816  ax-1cn 10817  ax-icn 10818  ax-addcl 10819  ax-addrcl 10820  ax-mulcl 10821  ax-mulrcl 10822  ax-mulcom 10823  ax-addass 10824  ax-mulass 10825  ax-distr 10826  ax-i2m1 10827  ax-1ne0 10828  ax-1rid 10829  ax-rnegex 10830  ax-rrecex 10831  ax-cnre 10832  ax-pre-lttri 10833  ax-pre-lttrn 10834  ax-pre-ltadd 10835  ax-pre-mulgt0 10836  ax-addf 10838  ax-mulf 10839
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3425  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5153  df-tr 5179  df-id 5472  df-eprel 5478  df-po 5486  df-so 5487  df-fr 5527  df-we 5529  df-xp 5575  df-rel 5576  df-cnv 5577  df-co 5578  df-dm 5579  df-rn 5580  df-res 5581  df-ima 5582  df-pred 6179  df-ord 6237  df-on 6238  df-lim 6239  df-suc 6240  df-iota 6359  df-fun 6403  df-fn 6404  df-f 6405  df-f1 6406  df-fo 6407  df-f1o 6408  df-fv 6409  df-riota 7192  df-ov 7238  df-oprab 7239  df-mpo 7240  df-om 7667  df-1st 7783  df-2nd 7784  df-wrecs 8071  df-recs 8132  df-rdg 8170  df-1o 8226  df-er 8415  df-map 8534  df-en 8651  df-dom 8652  df-sdom 8653  df-fin 8654  df-pnf 10899  df-mnf 10900  df-xr 10901  df-ltxr 10902  df-le 10903  df-sub 11094  df-neg 11095  df-nn 11861  df-2 11923  df-3 11924  df-4 11925  df-5 11926  df-6 11927  df-7 11928  df-8 11929  df-9 11930  df-n0 12121  df-z 12207  df-dec 12324  df-uz 12469  df-fz 13126  df-struct 16733  df-sets 16750  df-slot 16768  df-ndx 16778  df-base 16794  df-ress 16818  df-plusg 16848  df-mulr 16849  df-starv 16850  df-tset 16854  df-ple 16855  df-ds 16857  df-unif 16858  df-0g 16979  df-mgm 18147  df-sgrp 18196  df-mnd 18207  df-mhm 18251  df-grp 18401  df-minusg 18402  df-subg 18573  df-ghm 18653  df-cmn 19205  df-mgp 19538  df-ur 19550  df-ring 19597  df-cring 19598  df-rnghom 19768  df-subrg 19831  df-cnfld 20397  df-zring 20469  df-zrh 20503  df-zn 20506
This theorem is referenced by:  znleval  20552
  Copyright terms: Public domain W3C validator