| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > znle2 | Structured version Visualization version GIF version | ||
| Description: The ordering of the ℤ/nℤ structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
| Ref | Expression |
|---|---|
| znle2.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
| znle2.f | ⊢ 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊) |
| znle2.w | ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) |
| znle2.l | ⊢ ≤ = (le‘𝑌) |
| Ref | Expression |
|---|---|
| znle2 | ⊢ (𝑁 ∈ ℕ0 → ≤ = ((𝐹 ∘ ≤ ) ∘ ◡𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (RSpan‘ℤring) = (RSpan‘ℤring) | |
| 2 | eqid 2729 | . . 3 ⊢ (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) | |
| 3 | znle2.y | . . 3 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
| 4 | eqid 2729 | . . 3 ⊢ ((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) = ((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) | |
| 5 | znle2.w | . . 3 ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) | |
| 6 | znle2.l | . . 3 ⊢ ≤ = (le‘𝑌) | |
| 7 | 1, 2, 3, 4, 5, 6 | znle 21478 | . 2 ⊢ (𝑁 ∈ ℕ0 → ≤ = ((((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) ∘ ≤ ) ∘ ◡((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊))) |
| 8 | 1, 2, 3 | znzrh 21484 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (ℤRHom‘𝑌)) |
| 9 | 8 | reseq1d 5938 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) = ((ℤRHom‘𝑌) ↾ 𝑊)) |
| 10 | znle2.f | . . . . 5 ⊢ 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊) | |
| 11 | 9, 10 | eqtr4di 2782 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) = 𝐹) |
| 12 | 11 | coeq1d 5815 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) ∘ ≤ ) = (𝐹 ∘ ≤ )) |
| 13 | 11 | cnveqd 5829 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ◡((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) = ◡𝐹) |
| 14 | 12, 13 | coeq12d 5818 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) ∘ ≤ ) ∘ ◡((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊)) = ((𝐹 ∘ ≤ ) ∘ ◡𝐹)) |
| 15 | 7, 14 | eqtrd 2764 | 1 ⊢ (𝑁 ∈ ℕ0 → ≤ = ((𝐹 ∘ ≤ ) ∘ ◡𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ifcif 4484 {csn 4585 ◡ccnv 5630 ↾ cres 5633 ∘ ccom 5635 ‘cfv 6499 (class class class)co 7369 0cc0 11044 ≤ cle 11185 ℕ0cn0 12418 ℤcz 12505 ..^cfzo 13591 lecple 17203 /s cqus 17444 ~QG cqg 19036 RSpancrsp 21149 ℤringczring 21388 ℤRHomczrh 21441 ℤ/nℤczn 21444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-0g 17380 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-mhm 18692 df-grp 18850 df-minusg 18851 df-subg 19037 df-ghm 19127 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-cring 20156 df-rhm 20392 df-subrng 20466 df-subrg 20490 df-cnfld 21297 df-zring 21389 df-zrh 21445 df-zn 21448 |
| This theorem is referenced by: znleval 21496 |
| Copyright terms: Public domain | W3C validator |