Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > znle2 | Structured version Visualization version GIF version |
Description: The ordering of the ℤ/nℤ structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
Ref | Expression |
---|---|
znle2.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
znle2.f | ⊢ 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊) |
znle2.w | ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) |
znle2.l | ⊢ ≤ = (le‘𝑌) |
Ref | Expression |
---|---|
znle2 | ⊢ (𝑁 ∈ ℕ0 → ≤ = ((𝐹 ∘ ≤ ) ∘ ◡𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . 3 ⊢ (RSpan‘ℤring) = (RSpan‘ℤring) | |
2 | eqid 2739 | . . 3 ⊢ (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) | |
3 | znle2.y | . . 3 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
4 | eqid 2739 | . . 3 ⊢ ((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) = ((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) | |
5 | znle2.w | . . 3 ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) | |
6 | znle2.l | . . 3 ⊢ ≤ = (le‘𝑌) | |
7 | 1, 2, 3, 4, 5, 6 | znle 20534 | . 2 ⊢ (𝑁 ∈ ℕ0 → ≤ = ((((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) ∘ ≤ ) ∘ ◡((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊))) |
8 | 1, 2, 3 | znzrh 20540 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (ℤRHom‘𝑌)) |
9 | 8 | reseq1d 5868 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) = ((ℤRHom‘𝑌) ↾ 𝑊)) |
10 | znle2.f | . . . . 5 ⊢ 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊) | |
11 | 9, 10 | eqtr4di 2798 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) = 𝐹) |
12 | 11 | coeq1d 5748 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) ∘ ≤ ) = (𝐹 ∘ ≤ )) |
13 | 11 | cnveqd 5762 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ◡((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) = ◡𝐹) |
14 | 12, 13 | coeq12d 5751 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) ∘ ≤ ) ∘ ◡((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊)) = ((𝐹 ∘ ≤ ) ∘ ◡𝐹)) |
15 | 7, 14 | eqtrd 2779 | 1 ⊢ (𝑁 ∈ ℕ0 → ≤ = ((𝐹 ∘ ≤ ) ∘ ◡𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2112 ifcif 4456 {csn 4558 ◡ccnv 5568 ↾ cres 5571 ∘ ccom 5573 ‘cfv 6401 (class class class)co 7235 0cc0 10759 ≤ cle 10898 ℕ0cn0 12120 ℤcz 12206 ..^cfzo 13268 lecple 16842 /s cqus 17043 ~QG cqg 18572 RSpancrsp 20241 ℤringzring 20468 ℤRHomczrh 20499 ℤ/nℤczn 20502 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5196 ax-sep 5209 ax-nul 5216 ax-pow 5275 ax-pr 5339 ax-un 7545 ax-cnex 10815 ax-resscn 10816 ax-1cn 10817 ax-icn 10818 ax-addcl 10819 ax-addrcl 10820 ax-mulcl 10821 ax-mulrcl 10822 ax-mulcom 10823 ax-addass 10824 ax-mulass 10825 ax-distr 10826 ax-i2m1 10827 ax-1ne0 10828 ax-1rid 10829 ax-rnegex 10830 ax-rrecex 10831 ax-cnre 10832 ax-pre-lttri 10833 ax-pre-lttrn 10834 ax-pre-ltadd 10835 ax-pre-mulgt0 10836 ax-addf 10838 ax-mulf 10839 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5179 df-id 5472 df-eprel 5478 df-po 5486 df-so 5487 df-fr 5527 df-we 5529 df-xp 5575 df-rel 5576 df-cnv 5577 df-co 5578 df-dm 5579 df-rn 5580 df-res 5581 df-ima 5582 df-pred 6179 df-ord 6237 df-on 6238 df-lim 6239 df-suc 6240 df-iota 6359 df-fun 6403 df-fn 6404 df-f 6405 df-f1 6406 df-fo 6407 df-f1o 6408 df-fv 6409 df-riota 7192 df-ov 7238 df-oprab 7239 df-mpo 7240 df-om 7667 df-1st 7783 df-2nd 7784 df-wrecs 8071 df-recs 8132 df-rdg 8170 df-1o 8226 df-er 8415 df-map 8534 df-en 8651 df-dom 8652 df-sdom 8653 df-fin 8654 df-pnf 10899 df-mnf 10900 df-xr 10901 df-ltxr 10902 df-le 10903 df-sub 11094 df-neg 11095 df-nn 11861 df-2 11923 df-3 11924 df-4 11925 df-5 11926 df-6 11927 df-7 11928 df-8 11929 df-9 11930 df-n0 12121 df-z 12207 df-dec 12324 df-uz 12469 df-fz 13126 df-struct 16733 df-sets 16750 df-slot 16768 df-ndx 16778 df-base 16794 df-ress 16818 df-plusg 16848 df-mulr 16849 df-starv 16850 df-tset 16854 df-ple 16855 df-ds 16857 df-unif 16858 df-0g 16979 df-mgm 18147 df-sgrp 18196 df-mnd 18207 df-mhm 18251 df-grp 18401 df-minusg 18402 df-subg 18573 df-ghm 18653 df-cmn 19205 df-mgp 19538 df-ur 19550 df-ring 19597 df-cring 19598 df-rnghom 19768 df-subrg 19831 df-cnfld 20397 df-zring 20469 df-zrh 20503 df-zn 20506 |
This theorem is referenced by: znleval 20552 |
Copyright terms: Public domain | W3C validator |