Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhopvadd Structured version   Visualization version   GIF version

Theorem dvhopvadd 36901
Description: The vector sum operation for the constructed full vector space H. (Contributed by NM, 21-Feb-2014.) (Revised by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
dvhvadd.h 𝐻 = (LHyp‘𝐾)
dvhvadd.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvhvadd.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvhvadd.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvhvadd.f 𝐷 = (Scalar‘𝑈)
dvhvadd.s + = (+g𝑈)
dvhvadd.p = (+g𝐷)
Assertion
Ref Expression
dvhopvadd (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (⟨𝐹, 𝑄+𝐺, 𝑅⟩) = ⟨(𝐹𝐺), (𝑄 𝑅)⟩)

Proof of Theorem dvhopvadd
StepHypRef Expression
1 simp1 1130 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 opelxpi 5287 . . . 4 ((𝐹𝑇𝑄𝐸) → ⟨𝐹, 𝑄⟩ ∈ (𝑇 × 𝐸))
323ad2ant2 1128 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → ⟨𝐹, 𝑄⟩ ∈ (𝑇 × 𝐸))
4 opelxpi 5287 . . . 4 ((𝐺𝑇𝑅𝐸) → ⟨𝐺, 𝑅⟩ ∈ (𝑇 × 𝐸))
543ad2ant3 1129 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → ⟨𝐺, 𝑅⟩ ∈ (𝑇 × 𝐸))
6 dvhvadd.h . . . 4 𝐻 = (LHyp‘𝐾)
7 dvhvadd.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 dvhvadd.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
9 dvhvadd.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
10 dvhvadd.f . . . 4 𝐷 = (Scalar‘𝑈)
11 dvhvadd.s . . . 4 + = (+g𝑈)
12 dvhvadd.p . . . 4 = (+g𝐷)
136, 7, 8, 9, 10, 11, 12dvhvadd 36900 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (⟨𝐹, 𝑄⟩ ∈ (𝑇 × 𝐸) ∧ ⟨𝐺, 𝑅⟩ ∈ (𝑇 × 𝐸))) → (⟨𝐹, 𝑄+𝐺, 𝑅⟩) = ⟨((1st ‘⟨𝐹, 𝑄⟩) ∘ (1st ‘⟨𝐺, 𝑅⟩)), ((2nd ‘⟨𝐹, 𝑄⟩) (2nd ‘⟨𝐺, 𝑅⟩))⟩)
141, 3, 5, 13syl12anc 1474 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (⟨𝐹, 𝑄+𝐺, 𝑅⟩) = ⟨((1st ‘⟨𝐹, 𝑄⟩) ∘ (1st ‘⟨𝐺, 𝑅⟩)), ((2nd ‘⟨𝐹, 𝑄⟩) (2nd ‘⟨𝐺, 𝑅⟩))⟩)
15 op1stg 7331 . . . . 5 ((𝐹𝑇𝑄𝐸) → (1st ‘⟨𝐹, 𝑄⟩) = 𝐹)
16153ad2ant2 1128 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (1st ‘⟨𝐹, 𝑄⟩) = 𝐹)
17 op1stg 7331 . . . . 5 ((𝐺𝑇𝑅𝐸) → (1st ‘⟨𝐺, 𝑅⟩) = 𝐺)
18173ad2ant3 1129 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (1st ‘⟨𝐺, 𝑅⟩) = 𝐺)
1916, 18coeq12d 5424 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → ((1st ‘⟨𝐹, 𝑄⟩) ∘ (1st ‘⟨𝐺, 𝑅⟩)) = (𝐹𝐺))
20 op2ndg 7332 . . . . 5 ((𝐹𝑇𝑄𝐸) → (2nd ‘⟨𝐹, 𝑄⟩) = 𝑄)
21203ad2ant2 1128 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (2nd ‘⟨𝐹, 𝑄⟩) = 𝑄)
22 op2ndg 7332 . . . . 5 ((𝐺𝑇𝑅𝐸) → (2nd ‘⟨𝐺, 𝑅⟩) = 𝑅)
23223ad2ant3 1129 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (2nd ‘⟨𝐺, 𝑅⟩) = 𝑅)
2421, 23oveq12d 6814 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → ((2nd ‘⟨𝐹, 𝑄⟩) (2nd ‘⟨𝐺, 𝑅⟩)) = (𝑄 𝑅))
2519, 24opeq12d 4548 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → ⟨((1st ‘⟨𝐹, 𝑄⟩) ∘ (1st ‘⟨𝐺, 𝑅⟩)), ((2nd ‘⟨𝐹, 𝑄⟩) (2nd ‘⟨𝐺, 𝑅⟩))⟩ = ⟨(𝐹𝐺), (𝑄 𝑅)⟩)
2614, 25eqtrd 2805 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (⟨𝐹, 𝑄+𝐺, 𝑅⟩) = ⟨(𝐹𝐺), (𝑄 𝑅)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  cop 4323   × cxp 5248  ccom 5254  cfv 6030  (class class class)co 6796  1st c1st 7317  2nd c2nd 7318  +gcplusg 16149  Scalarcsca 16152  HLchlt 35157  LHypclh 35791  LTrncltrn 35908  TEndoctendo 36560  DVecHcdvh 36886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-n0 11500  df-z 11585  df-uz 11894  df-fz 12534  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-plusg 16162  df-mulr 16163  df-sca 16165  df-vsca 16166  df-edring 36565  df-dvech 36887
This theorem is referenced by:  dvhopvadd2  36902  dvhgrp  36915  dvh0g  36919  diblsmopel  36979  cdlemn4  37006  cdlemn6  37010  dihopelvalcpre  37056
  Copyright terms: Public domain W3C validator