Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhopvadd | Structured version Visualization version GIF version |
Description: The vector sum operation for the constructed full vector space H. (Contributed by NM, 21-Feb-2014.) (Revised by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
dvhvadd.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dvhvadd.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dvhvadd.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
dvhvadd.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dvhvadd.f | ⊢ 𝐷 = (Scalar‘𝑈) |
dvhvadd.s | ⊢ + = (+g‘𝑈) |
dvhvadd.p | ⊢ ⨣ = (+g‘𝐷) |
Ref | Expression |
---|---|
dvhopvadd | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → (〈𝐹, 𝑄〉 + 〈𝐺, 𝑅〉) = 〈(𝐹 ∘ 𝐺), (𝑄 ⨣ 𝑅)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | opelxpi 5626 | . . . 4 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) → 〈𝐹, 𝑄〉 ∈ (𝑇 × 𝐸)) | |
3 | 2 | 3ad2ant2 1133 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → 〈𝐹, 𝑄〉 ∈ (𝑇 × 𝐸)) |
4 | opelxpi 5626 | . . . 4 ⊢ ((𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸) → 〈𝐺, 𝑅〉 ∈ (𝑇 × 𝐸)) | |
5 | 4 | 3ad2ant3 1134 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → 〈𝐺, 𝑅〉 ∈ (𝑇 × 𝐸)) |
6 | dvhvadd.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | dvhvadd.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
8 | dvhvadd.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
9 | dvhvadd.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
10 | dvhvadd.f | . . . 4 ⊢ 𝐷 = (Scalar‘𝑈) | |
11 | dvhvadd.s | . . . 4 ⊢ + = (+g‘𝑈) | |
12 | dvhvadd.p | . . . 4 ⊢ ⨣ = (+g‘𝐷) | |
13 | 6, 7, 8, 9, 10, 11, 12 | dvhvadd 39106 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (〈𝐹, 𝑄〉 ∈ (𝑇 × 𝐸) ∧ 〈𝐺, 𝑅〉 ∈ (𝑇 × 𝐸))) → (〈𝐹, 𝑄〉 + 〈𝐺, 𝑅〉) = 〈((1st ‘〈𝐹, 𝑄〉) ∘ (1st ‘〈𝐺, 𝑅〉)), ((2nd ‘〈𝐹, 𝑄〉) ⨣ (2nd ‘〈𝐺, 𝑅〉))〉) |
14 | 1, 3, 5, 13 | syl12anc 834 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → (〈𝐹, 𝑄〉 + 〈𝐺, 𝑅〉) = 〈((1st ‘〈𝐹, 𝑄〉) ∘ (1st ‘〈𝐺, 𝑅〉)), ((2nd ‘〈𝐹, 𝑄〉) ⨣ (2nd ‘〈𝐺, 𝑅〉))〉) |
15 | op1stg 7843 | . . . . 5 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) → (1st ‘〈𝐹, 𝑄〉) = 𝐹) | |
16 | 15 | 3ad2ant2 1133 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → (1st ‘〈𝐹, 𝑄〉) = 𝐹) |
17 | op1stg 7843 | . . . . 5 ⊢ ((𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸) → (1st ‘〈𝐺, 𝑅〉) = 𝐺) | |
18 | 17 | 3ad2ant3 1134 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → (1st ‘〈𝐺, 𝑅〉) = 𝐺) |
19 | 16, 18 | coeq12d 5773 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → ((1st ‘〈𝐹, 𝑄〉) ∘ (1st ‘〈𝐺, 𝑅〉)) = (𝐹 ∘ 𝐺)) |
20 | op2ndg 7844 | . . . . 5 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) → (2nd ‘〈𝐹, 𝑄〉) = 𝑄) | |
21 | 20 | 3ad2ant2 1133 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → (2nd ‘〈𝐹, 𝑄〉) = 𝑄) |
22 | op2ndg 7844 | . . . . 5 ⊢ ((𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸) → (2nd ‘〈𝐺, 𝑅〉) = 𝑅) | |
23 | 22 | 3ad2ant3 1134 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → (2nd ‘〈𝐺, 𝑅〉) = 𝑅) |
24 | 21, 23 | oveq12d 7293 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → ((2nd ‘〈𝐹, 𝑄〉) ⨣ (2nd ‘〈𝐺, 𝑅〉)) = (𝑄 ⨣ 𝑅)) |
25 | 19, 24 | opeq12d 4812 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → 〈((1st ‘〈𝐹, 𝑄〉) ∘ (1st ‘〈𝐺, 𝑅〉)), ((2nd ‘〈𝐹, 𝑄〉) ⨣ (2nd ‘〈𝐺, 𝑅〉))〉 = 〈(𝐹 ∘ 𝐺), (𝑄 ⨣ 𝑅)〉) |
26 | 14, 25 | eqtrd 2778 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → (〈𝐹, 𝑄〉 + 〈𝐺, 𝑅〉) = 〈(𝐹 ∘ 𝐺), (𝑄 ⨣ 𝑅)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 〈cop 4567 × cxp 5587 ∘ ccom 5593 ‘cfv 6433 (class class class)co 7275 1st c1st 7829 2nd c2nd 7830 +gcplusg 16962 Scalarcsca 16965 HLchlt 37364 LHypclh 37998 LTrncltrn 38115 TEndoctendo 38766 DVecHcdvh 39092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-struct 16848 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-edring 38771 df-dvech 39093 |
This theorem is referenced by: dvhopvadd2 39108 dvhgrp 39121 dvh0g 39125 diblsmopel 39185 cdlemn4 39212 cdlemn6 39216 dihopelvalcpre 39262 |
Copyright terms: Public domain | W3C validator |