![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhopvadd | Structured version Visualization version GIF version |
Description: The vector sum operation for the constructed full vector space H. (Contributed by NM, 21-Feb-2014.) (Revised by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
dvhvadd.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dvhvadd.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dvhvadd.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
dvhvadd.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dvhvadd.f | ⊢ 𝐷 = (Scalar‘𝑈) |
dvhvadd.s | ⊢ + = (+g‘𝑈) |
dvhvadd.p | ⊢ ⨣ = (+g‘𝐷) |
Ref | Expression |
---|---|
dvhopvadd | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → (〈𝐹, 𝑄〉 + 〈𝐺, 𝑅〉) = 〈(𝐹 ∘ 𝐺), (𝑄 ⨣ 𝑅)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | opelxpi 5737 | . . . 4 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) → 〈𝐹, 𝑄〉 ∈ (𝑇 × 𝐸)) | |
3 | 2 | 3ad2ant2 1134 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → 〈𝐹, 𝑄〉 ∈ (𝑇 × 𝐸)) |
4 | opelxpi 5737 | . . . 4 ⊢ ((𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸) → 〈𝐺, 𝑅〉 ∈ (𝑇 × 𝐸)) | |
5 | 4 | 3ad2ant3 1135 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → 〈𝐺, 𝑅〉 ∈ (𝑇 × 𝐸)) |
6 | dvhvadd.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | dvhvadd.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
8 | dvhvadd.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
9 | dvhvadd.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
10 | dvhvadd.f | . . . 4 ⊢ 𝐷 = (Scalar‘𝑈) | |
11 | dvhvadd.s | . . . 4 ⊢ + = (+g‘𝑈) | |
12 | dvhvadd.p | . . . 4 ⊢ ⨣ = (+g‘𝐷) | |
13 | 6, 7, 8, 9, 10, 11, 12 | dvhvadd 41049 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (〈𝐹, 𝑄〉 ∈ (𝑇 × 𝐸) ∧ 〈𝐺, 𝑅〉 ∈ (𝑇 × 𝐸))) → (〈𝐹, 𝑄〉 + 〈𝐺, 𝑅〉) = 〈((1st ‘〈𝐹, 𝑄〉) ∘ (1st ‘〈𝐺, 𝑅〉)), ((2nd ‘〈𝐹, 𝑄〉) ⨣ (2nd ‘〈𝐺, 𝑅〉))〉) |
14 | 1, 3, 5, 13 | syl12anc 836 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → (〈𝐹, 𝑄〉 + 〈𝐺, 𝑅〉) = 〈((1st ‘〈𝐹, 𝑄〉) ∘ (1st ‘〈𝐺, 𝑅〉)), ((2nd ‘〈𝐹, 𝑄〉) ⨣ (2nd ‘〈𝐺, 𝑅〉))〉) |
15 | op1stg 8042 | . . . . 5 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) → (1st ‘〈𝐹, 𝑄〉) = 𝐹) | |
16 | 15 | 3ad2ant2 1134 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → (1st ‘〈𝐹, 𝑄〉) = 𝐹) |
17 | op1stg 8042 | . . . . 5 ⊢ ((𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸) → (1st ‘〈𝐺, 𝑅〉) = 𝐺) | |
18 | 17 | 3ad2ant3 1135 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → (1st ‘〈𝐺, 𝑅〉) = 𝐺) |
19 | 16, 18 | coeq12d 5889 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → ((1st ‘〈𝐹, 𝑄〉) ∘ (1st ‘〈𝐺, 𝑅〉)) = (𝐹 ∘ 𝐺)) |
20 | op2ndg 8043 | . . . . 5 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) → (2nd ‘〈𝐹, 𝑄〉) = 𝑄) | |
21 | 20 | 3ad2ant2 1134 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → (2nd ‘〈𝐹, 𝑄〉) = 𝑄) |
22 | op2ndg 8043 | . . . . 5 ⊢ ((𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸) → (2nd ‘〈𝐺, 𝑅〉) = 𝑅) | |
23 | 22 | 3ad2ant3 1135 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → (2nd ‘〈𝐺, 𝑅〉) = 𝑅) |
24 | 21, 23 | oveq12d 7466 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → ((2nd ‘〈𝐹, 𝑄〉) ⨣ (2nd ‘〈𝐺, 𝑅〉)) = (𝑄 ⨣ 𝑅)) |
25 | 19, 24 | opeq12d 4905 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → 〈((1st ‘〈𝐹, 𝑄〉) ∘ (1st ‘〈𝐺, 𝑅〉)), ((2nd ‘〈𝐹, 𝑄〉) ⨣ (2nd ‘〈𝐺, 𝑅〉))〉 = 〈(𝐹 ∘ 𝐺), (𝑄 ⨣ 𝑅)〉) |
26 | 14, 25 | eqtrd 2780 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → (〈𝐹, 𝑄〉 + 〈𝐺, 𝑅〉) = 〈(𝐹 ∘ 𝐺), (𝑄 ⨣ 𝑅)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 〈cop 4654 × cxp 5698 ∘ ccom 5704 ‘cfv 6573 (class class class)co 7448 1st c1st 8028 2nd c2nd 8029 +gcplusg 17311 Scalarcsca 17314 HLchlt 39306 LHypclh 39941 LTrncltrn 40058 TEndoctendo 40709 DVecHcdvh 41035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-struct 17194 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-edring 40714 df-dvech 41036 |
This theorem is referenced by: dvhopvadd2 41051 dvhgrp 41064 dvh0g 41068 diblsmopel 41128 cdlemn4 41155 cdlemn6 41159 dihopelvalcpre 41205 |
Copyright terms: Public domain | W3C validator |