Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhopvadd Structured version   Visualization version   GIF version

Theorem dvhopvadd 41080
Description: The vector sum operation for the constructed full vector space H. (Contributed by NM, 21-Feb-2014.) (Revised by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
dvhvadd.h 𝐻 = (LHyp‘𝐾)
dvhvadd.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvhvadd.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvhvadd.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvhvadd.f 𝐷 = (Scalar‘𝑈)
dvhvadd.s + = (+g𝑈)
dvhvadd.p = (+g𝐷)
Assertion
Ref Expression
dvhopvadd (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (⟨𝐹, 𝑄+𝐺, 𝑅⟩) = ⟨(𝐹𝐺), (𝑄 𝑅)⟩)

Proof of Theorem dvhopvadd
StepHypRef Expression
1 simp1 1136 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 opelxpi 5668 . . . 4 ((𝐹𝑇𝑄𝐸) → ⟨𝐹, 𝑄⟩ ∈ (𝑇 × 𝐸))
323ad2ant2 1134 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → ⟨𝐹, 𝑄⟩ ∈ (𝑇 × 𝐸))
4 opelxpi 5668 . . . 4 ((𝐺𝑇𝑅𝐸) → ⟨𝐺, 𝑅⟩ ∈ (𝑇 × 𝐸))
543ad2ant3 1135 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → ⟨𝐺, 𝑅⟩ ∈ (𝑇 × 𝐸))
6 dvhvadd.h . . . 4 𝐻 = (LHyp‘𝐾)
7 dvhvadd.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 dvhvadd.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
9 dvhvadd.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
10 dvhvadd.f . . . 4 𝐷 = (Scalar‘𝑈)
11 dvhvadd.s . . . 4 + = (+g𝑈)
12 dvhvadd.p . . . 4 = (+g𝐷)
136, 7, 8, 9, 10, 11, 12dvhvadd 41079 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (⟨𝐹, 𝑄⟩ ∈ (𝑇 × 𝐸) ∧ ⟨𝐺, 𝑅⟩ ∈ (𝑇 × 𝐸))) → (⟨𝐹, 𝑄+𝐺, 𝑅⟩) = ⟨((1st ‘⟨𝐹, 𝑄⟩) ∘ (1st ‘⟨𝐺, 𝑅⟩)), ((2nd ‘⟨𝐹, 𝑄⟩) (2nd ‘⟨𝐺, 𝑅⟩))⟩)
141, 3, 5, 13syl12anc 836 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (⟨𝐹, 𝑄+𝐺, 𝑅⟩) = ⟨((1st ‘⟨𝐹, 𝑄⟩) ∘ (1st ‘⟨𝐺, 𝑅⟩)), ((2nd ‘⟨𝐹, 𝑄⟩) (2nd ‘⟨𝐺, 𝑅⟩))⟩)
15 op1stg 7959 . . . . 5 ((𝐹𝑇𝑄𝐸) → (1st ‘⟨𝐹, 𝑄⟩) = 𝐹)
16153ad2ant2 1134 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (1st ‘⟨𝐹, 𝑄⟩) = 𝐹)
17 op1stg 7959 . . . . 5 ((𝐺𝑇𝑅𝐸) → (1st ‘⟨𝐺, 𝑅⟩) = 𝐺)
18173ad2ant3 1135 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (1st ‘⟨𝐺, 𝑅⟩) = 𝐺)
1916, 18coeq12d 5818 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → ((1st ‘⟨𝐹, 𝑄⟩) ∘ (1st ‘⟨𝐺, 𝑅⟩)) = (𝐹𝐺))
20 op2ndg 7960 . . . . 5 ((𝐹𝑇𝑄𝐸) → (2nd ‘⟨𝐹, 𝑄⟩) = 𝑄)
21203ad2ant2 1134 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (2nd ‘⟨𝐹, 𝑄⟩) = 𝑄)
22 op2ndg 7960 . . . . 5 ((𝐺𝑇𝑅𝐸) → (2nd ‘⟨𝐺, 𝑅⟩) = 𝑅)
23223ad2ant3 1135 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (2nd ‘⟨𝐺, 𝑅⟩) = 𝑅)
2421, 23oveq12d 7387 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → ((2nd ‘⟨𝐹, 𝑄⟩) (2nd ‘⟨𝐺, 𝑅⟩)) = (𝑄 𝑅))
2519, 24opeq12d 4841 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → ⟨((1st ‘⟨𝐹, 𝑄⟩) ∘ (1st ‘⟨𝐺, 𝑅⟩)), ((2nd ‘⟨𝐹, 𝑄⟩) (2nd ‘⟨𝐺, 𝑅⟩))⟩ = ⟨(𝐹𝐺), (𝑄 𝑅)⟩)
2614, 25eqtrd 2764 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (⟨𝐹, 𝑄+𝐺, 𝑅⟩) = ⟨(𝐹𝐺), (𝑄 𝑅)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cop 4591   × cxp 5629  ccom 5635  cfv 6499  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  +gcplusg 17196  Scalarcsca 17199  HLchlt 39336  LHypclh 39971  LTrncltrn 40088  TEndoctendo 40739  DVecHcdvh 41065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-edring 40744  df-dvech 41066
This theorem is referenced by:  dvhopvadd2  41081  dvhgrp  41094  dvh0g  41098  diblsmopel  41158  cdlemn4  41185  cdlemn6  41189  dihopelvalcpre  41235
  Copyright terms: Public domain W3C validator