Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhopvadd Structured version   Visualization version   GIF version

Theorem dvhopvadd 39556
Description: The vector sum operation for the constructed full vector space H. (Contributed by NM, 21-Feb-2014.) (Revised by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
dvhvadd.h 𝐻 = (LHyp‘𝐾)
dvhvadd.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvhvadd.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvhvadd.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvhvadd.f 𝐷 = (Scalar‘𝑈)
dvhvadd.s + = (+g𝑈)
dvhvadd.p = (+g𝐷)
Assertion
Ref Expression
dvhopvadd (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (⟨𝐹, 𝑄+𝐺, 𝑅⟩) = ⟨(𝐹𝐺), (𝑄 𝑅)⟩)

Proof of Theorem dvhopvadd
StepHypRef Expression
1 simp1 1136 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 opelxpi 5670 . . . 4 ((𝐹𝑇𝑄𝐸) → ⟨𝐹, 𝑄⟩ ∈ (𝑇 × 𝐸))
323ad2ant2 1134 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → ⟨𝐹, 𝑄⟩ ∈ (𝑇 × 𝐸))
4 opelxpi 5670 . . . 4 ((𝐺𝑇𝑅𝐸) → ⟨𝐺, 𝑅⟩ ∈ (𝑇 × 𝐸))
543ad2ant3 1135 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → ⟨𝐺, 𝑅⟩ ∈ (𝑇 × 𝐸))
6 dvhvadd.h . . . 4 𝐻 = (LHyp‘𝐾)
7 dvhvadd.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 dvhvadd.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
9 dvhvadd.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
10 dvhvadd.f . . . 4 𝐷 = (Scalar‘𝑈)
11 dvhvadd.s . . . 4 + = (+g𝑈)
12 dvhvadd.p . . . 4 = (+g𝐷)
136, 7, 8, 9, 10, 11, 12dvhvadd 39555 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (⟨𝐹, 𝑄⟩ ∈ (𝑇 × 𝐸) ∧ ⟨𝐺, 𝑅⟩ ∈ (𝑇 × 𝐸))) → (⟨𝐹, 𝑄+𝐺, 𝑅⟩) = ⟨((1st ‘⟨𝐹, 𝑄⟩) ∘ (1st ‘⟨𝐺, 𝑅⟩)), ((2nd ‘⟨𝐹, 𝑄⟩) (2nd ‘⟨𝐺, 𝑅⟩))⟩)
141, 3, 5, 13syl12anc 835 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (⟨𝐹, 𝑄+𝐺, 𝑅⟩) = ⟨((1st ‘⟨𝐹, 𝑄⟩) ∘ (1st ‘⟨𝐺, 𝑅⟩)), ((2nd ‘⟨𝐹, 𝑄⟩) (2nd ‘⟨𝐺, 𝑅⟩))⟩)
15 op1stg 7933 . . . . 5 ((𝐹𝑇𝑄𝐸) → (1st ‘⟨𝐹, 𝑄⟩) = 𝐹)
16153ad2ant2 1134 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (1st ‘⟨𝐹, 𝑄⟩) = 𝐹)
17 op1stg 7933 . . . . 5 ((𝐺𝑇𝑅𝐸) → (1st ‘⟨𝐺, 𝑅⟩) = 𝐺)
18173ad2ant3 1135 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (1st ‘⟨𝐺, 𝑅⟩) = 𝐺)
1916, 18coeq12d 5820 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → ((1st ‘⟨𝐹, 𝑄⟩) ∘ (1st ‘⟨𝐺, 𝑅⟩)) = (𝐹𝐺))
20 op2ndg 7934 . . . . 5 ((𝐹𝑇𝑄𝐸) → (2nd ‘⟨𝐹, 𝑄⟩) = 𝑄)
21203ad2ant2 1134 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (2nd ‘⟨𝐹, 𝑄⟩) = 𝑄)
22 op2ndg 7934 . . . . 5 ((𝐺𝑇𝑅𝐸) → (2nd ‘⟨𝐺, 𝑅⟩) = 𝑅)
23223ad2ant3 1135 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (2nd ‘⟨𝐺, 𝑅⟩) = 𝑅)
2421, 23oveq12d 7375 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → ((2nd ‘⟨𝐹, 𝑄⟩) (2nd ‘⟨𝐺, 𝑅⟩)) = (𝑄 𝑅))
2519, 24opeq12d 4838 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → ⟨((1st ‘⟨𝐹, 𝑄⟩) ∘ (1st ‘⟨𝐺, 𝑅⟩)), ((2nd ‘⟨𝐹, 𝑄⟩) (2nd ‘⟨𝐺, 𝑅⟩))⟩ = ⟨(𝐹𝐺), (𝑄 𝑅)⟩)
2614, 25eqtrd 2776 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (⟨𝐹, 𝑄+𝐺, 𝑅⟩) = ⟨(𝐹𝐺), (𝑄 𝑅)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  cop 4592   × cxp 5631  ccom 5637  cfv 6496  (class class class)co 7357  1st c1st 7919  2nd c2nd 7920  +gcplusg 17133  Scalarcsca 17136  HLchlt 37812  LHypclh 38447  LTrncltrn 38564  TEndoctendo 39215  DVecHcdvh 39541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-edring 39220  df-dvech 39542
This theorem is referenced by:  dvhopvadd2  39557  dvhgrp  39570  dvh0g  39574  diblsmopel  39634  cdlemn4  39661  cdlemn6  39665  dihopelvalcpre  39711
  Copyright terms: Public domain W3C validator