Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dpadd | Structured version Visualization version GIF version |
Description: Addition with one decimal. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
Ref | Expression |
---|---|
dpmul.a | ⊢ 𝐴 ∈ ℕ0 |
dpmul.b | ⊢ 𝐵 ∈ ℕ0 |
dpmul.c | ⊢ 𝐶 ∈ ℕ0 |
dpmul.d | ⊢ 𝐷 ∈ ℕ0 |
dpmul.e | ⊢ 𝐸 ∈ ℕ0 |
dpadd.f | ⊢ 𝐹 ∈ ℕ0 |
dpadd.1 | ⊢ (;𝐴𝐵 + ;𝐶𝐷) = ;𝐸𝐹 |
Ref | Expression |
---|---|
dpadd | ⊢ ((𝐴.𝐵) + (𝐶.𝐷)) = (𝐸.𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dpmul.a | . . . . . 6 ⊢ 𝐴 ∈ ℕ0 | |
2 | dpmul.b | . . . . . 6 ⊢ 𝐵 ∈ ℕ0 | |
3 | 1, 2 | deccl 12512 | . . . . 5 ⊢ ;𝐴𝐵 ∈ ℕ0 |
4 | 3 | nn0cni 12305 | . . . 4 ⊢ ;𝐴𝐵 ∈ ℂ |
5 | dpmul.c | . . . . . 6 ⊢ 𝐶 ∈ ℕ0 | |
6 | dpmul.d | . . . . . 6 ⊢ 𝐷 ∈ ℕ0 | |
7 | 5, 6 | deccl 12512 | . . . . 5 ⊢ ;𝐶𝐷 ∈ ℕ0 |
8 | 7 | nn0cni 12305 | . . . 4 ⊢ ;𝐶𝐷 ∈ ℂ |
9 | 10nn 12513 | . . . . 5 ⊢ ;10 ∈ ℕ | |
10 | 9 | nncni 12043 | . . . 4 ⊢ ;10 ∈ ℂ |
11 | 9 | nnne0i 12073 | . . . 4 ⊢ ;10 ≠ 0 |
12 | 4, 8, 10, 11 | divdiri 11792 | . . 3 ⊢ ((;𝐴𝐵 + ;𝐶𝐷) / ;10) = ((;𝐴𝐵 / ;10) + (;𝐶𝐷 / ;10)) |
13 | dpadd.1 | . . . 4 ⊢ (;𝐴𝐵 + ;𝐶𝐷) = ;𝐸𝐹 | |
14 | 13 | oveq1i 7318 | . . 3 ⊢ ((;𝐴𝐵 + ;𝐶𝐷) / ;10) = (;𝐸𝐹 / ;10) |
15 | 12, 14 | eqtr3i 2765 | . 2 ⊢ ((;𝐴𝐵 / ;10) + (;𝐶𝐷 / ;10)) = (;𝐸𝐹 / ;10) |
16 | 2 | nn0rei 12304 | . . . 4 ⊢ 𝐵 ∈ ℝ |
17 | 1, 16 | decdiv10 31268 | . . 3 ⊢ (;𝐴𝐵 / ;10) = (𝐴.𝐵) |
18 | 6 | nn0rei 12304 | . . . 4 ⊢ 𝐷 ∈ ℝ |
19 | 5, 18 | decdiv10 31268 | . . 3 ⊢ (;𝐶𝐷 / ;10) = (𝐶.𝐷) |
20 | 17, 19 | oveq12i 7320 | . 2 ⊢ ((;𝐴𝐵 / ;10) + (;𝐶𝐷 / ;10)) = ((𝐴.𝐵) + (𝐶.𝐷)) |
21 | dpmul.e | . . 3 ⊢ 𝐸 ∈ ℕ0 | |
22 | dpadd.f | . . . 4 ⊢ 𝐹 ∈ ℕ0 | |
23 | 22 | nn0rei 12304 | . . 3 ⊢ 𝐹 ∈ ℝ |
24 | 21, 23 | decdiv10 31268 | . 2 ⊢ (;𝐸𝐹 / ;10) = (𝐸.𝐹) |
25 | 15, 20, 24 | 3eqtr3i 2771 | 1 ⊢ ((𝐴.𝐵) + (𝐶.𝐷)) = (𝐸.𝐹) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2103 (class class class)co 7308 0cc0 10931 1c1 10932 + caddc 10934 / cdiv 11692 ℕ0cn0 12293 ;cdc 12497 .cdp 31260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1968 ax-7 2008 ax-8 2105 ax-9 2113 ax-10 2134 ax-11 2151 ax-12 2168 ax-ext 2706 ax-sep 5231 ax-nul 5238 ax-pow 5296 ax-pr 5360 ax-un 7621 ax-resscn 10988 ax-1cn 10989 ax-icn 10990 ax-addcl 10991 ax-addrcl 10992 ax-mulcl 10993 ax-mulrcl 10994 ax-mulcom 10995 ax-addass 10996 ax-mulass 10997 ax-distr 10998 ax-i2m1 10999 ax-1ne0 11000 ax-1rid 11001 ax-rnegex 11002 ax-rrecex 11003 ax-cnre 11004 ax-pre-lttri 11005 ax-pre-lttrn 11006 ax-pre-ltadd 11007 ax-pre-mulgt0 11008 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2713 df-cleq 2727 df-clel 2813 df-nfc 2885 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3339 df-reu 3340 df-rab 3357 df-v 3438 df-sbc 3721 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4844 df-iun 4932 df-br 5081 df-opab 5143 df-mpt 5164 df-tr 5198 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7265 df-ov 7311 df-oprab 7312 df-mpo 7313 df-om 7749 df-2nd 7868 df-frecs 8132 df-wrecs 8163 df-recs 8237 df-rdg 8276 df-er 8534 df-en 8770 df-dom 8771 df-sdom 8772 df-pnf 11071 df-mnf 11072 df-xr 11073 df-ltxr 11074 df-le 11075 df-sub 11267 df-neg 11268 df-div 11693 df-nn 12034 df-2 12096 df-3 12097 df-4 12098 df-5 12099 df-6 12100 df-7 12101 df-8 12102 df-9 12103 df-n0 12294 df-dec 12498 df-dp2 31244 df-dp 31261 |
This theorem is referenced by: threehalves 31287 hgt750lemd 32724 hgt750lem2 32728 |
Copyright terms: Public domain | W3C validator |