![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dpadd | Structured version Visualization version GIF version |
Description: Addition with one decimal. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
Ref | Expression |
---|---|
dpmul.a | ⊢ 𝐴 ∈ ℕ0 |
dpmul.b | ⊢ 𝐵 ∈ ℕ0 |
dpmul.c | ⊢ 𝐶 ∈ ℕ0 |
dpmul.d | ⊢ 𝐷 ∈ ℕ0 |
dpmul.e | ⊢ 𝐸 ∈ ℕ0 |
dpadd.f | ⊢ 𝐹 ∈ ℕ0 |
dpadd.1 | ⊢ (;𝐴𝐵 + ;𝐶𝐷) = ;𝐸𝐹 |
Ref | Expression |
---|---|
dpadd | ⊢ ((𝐴.𝐵) + (𝐶.𝐷)) = (𝐸.𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dpmul.a | . . . . . 6 ⊢ 𝐴 ∈ ℕ0 | |
2 | dpmul.b | . . . . . 6 ⊢ 𝐵 ∈ ℕ0 | |
3 | 1, 2 | deccl 11925 | . . . . 5 ⊢ ;𝐴𝐵 ∈ ℕ0 |
4 | 3 | nn0cni 11719 | . . . 4 ⊢ ;𝐴𝐵 ∈ ℂ |
5 | dpmul.c | . . . . . 6 ⊢ 𝐶 ∈ ℕ0 | |
6 | dpmul.d | . . . . . 6 ⊢ 𝐷 ∈ ℕ0 | |
7 | 5, 6 | deccl 11925 | . . . . 5 ⊢ ;𝐶𝐷 ∈ ℕ0 |
8 | 7 | nn0cni 11719 | . . . 4 ⊢ ;𝐶𝐷 ∈ ℂ |
9 | 10nn 11926 | . . . . 5 ⊢ ;10 ∈ ℕ | |
10 | 9 | nncni 11449 | . . . 4 ⊢ ;10 ∈ ℂ |
11 | 9 | nnne0i 11479 | . . . 4 ⊢ ;10 ≠ 0 |
12 | 4, 8, 10, 11 | divdiri 11197 | . . 3 ⊢ ((;𝐴𝐵 + ;𝐶𝐷) / ;10) = ((;𝐴𝐵 / ;10) + (;𝐶𝐷 / ;10)) |
13 | dpadd.1 | . . . 4 ⊢ (;𝐴𝐵 + ;𝐶𝐷) = ;𝐸𝐹 | |
14 | 13 | oveq1i 6985 | . . 3 ⊢ ((;𝐴𝐵 + ;𝐶𝐷) / ;10) = (;𝐸𝐹 / ;10) |
15 | 12, 14 | eqtr3i 2799 | . 2 ⊢ ((;𝐴𝐵 / ;10) + (;𝐶𝐷 / ;10)) = (;𝐸𝐹 / ;10) |
16 | 2 | nn0rei 11718 | . . . 4 ⊢ 𝐵 ∈ ℝ |
17 | 1, 16 | decdiv10 30343 | . . 3 ⊢ (;𝐴𝐵 / ;10) = (𝐴.𝐵) |
18 | 6 | nn0rei 11718 | . . . 4 ⊢ 𝐷 ∈ ℝ |
19 | 5, 18 | decdiv10 30343 | . . 3 ⊢ (;𝐶𝐷 / ;10) = (𝐶.𝐷) |
20 | 17, 19 | oveq12i 6987 | . 2 ⊢ ((;𝐴𝐵 / ;10) + (;𝐶𝐷 / ;10)) = ((𝐴.𝐵) + (𝐶.𝐷)) |
21 | dpmul.e | . . 3 ⊢ 𝐸 ∈ ℕ0 | |
22 | dpadd.f | . . . 4 ⊢ 𝐹 ∈ ℕ0 | |
23 | 22 | nn0rei 11718 | . . 3 ⊢ 𝐹 ∈ ℝ |
24 | 21, 23 | decdiv10 30343 | . 2 ⊢ (;𝐸𝐹 / ;10) = (𝐸.𝐹) |
25 | 15, 20, 24 | 3eqtr3i 2805 | 1 ⊢ ((𝐴.𝐵) + (𝐶.𝐷)) = (𝐸.𝐹) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1508 ∈ wcel 2051 (class class class)co 6975 0cc0 10334 1c1 10335 + caddc 10337 / cdiv 11097 ℕ0cn0 11706 ;cdc 11910 .cdp 30335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 ax-un 7278 ax-resscn 10391 ax-1cn 10392 ax-icn 10393 ax-addcl 10394 ax-addrcl 10395 ax-mulcl 10396 ax-mulrcl 10397 ax-mulcom 10398 ax-addass 10399 ax-mulass 10400 ax-distr 10401 ax-i2m1 10402 ax-1ne0 10403 ax-1rid 10404 ax-rnegex 10405 ax-rrecex 10406 ax-cnre 10407 ax-pre-lttri 10408 ax-pre-lttrn 10409 ax-pre-ltadd 10410 ax-pre-mulgt0 10411 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-nel 3069 df-ral 3088 df-rex 3089 df-reu 3090 df-rmo 3091 df-rab 3092 df-v 3412 df-sbc 3677 df-csb 3782 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-pss 3840 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-tp 4441 df-op 4443 df-uni 4710 df-iun 4791 df-br 4927 df-opab 4989 df-mpt 5006 df-tr 5028 df-id 5309 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-we 5365 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-pred 5984 df-ord 6030 df-on 6031 df-lim 6032 df-suc 6033 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-riota 6936 df-ov 6978 df-oprab 6979 df-mpo 6980 df-om 7396 df-wrecs 7749 df-recs 7811 df-rdg 7849 df-er 8088 df-en 8306 df-dom 8307 df-sdom 8308 df-pnf 10475 df-mnf 10476 df-xr 10477 df-ltxr 10478 df-le 10479 df-sub 10671 df-neg 10672 df-div 11098 df-nn 11439 df-2 11502 df-3 11503 df-4 11504 df-5 11505 df-6 11506 df-7 11507 df-8 11508 df-9 11509 df-n0 11707 df-dec 11911 df-dp2 30319 df-dp 30336 |
This theorem is referenced by: threehalves 30362 hgt750lemd 31600 hgt750lem2 31604 |
Copyright terms: Public domain | W3C validator |