Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dpadd Structured version   Visualization version   GIF version

Theorem dpadd 30358
Description: Addition with one decimal. (Contributed by Thierry Arnoux, 27-Dec-2021.)
Hypotheses
Ref Expression
dpmul.a 𝐴 ∈ ℕ0
dpmul.b 𝐵 ∈ ℕ0
dpmul.c 𝐶 ∈ ℕ0
dpmul.d 𝐷 ∈ ℕ0
dpmul.e 𝐸 ∈ ℕ0
dpadd.f 𝐹 ∈ ℕ0
dpadd.1 (𝐴𝐵 + 𝐶𝐷) = 𝐸𝐹
Assertion
Ref Expression
dpadd ((𝐴.𝐵) + (𝐶.𝐷)) = (𝐸.𝐹)

Proof of Theorem dpadd
StepHypRef Expression
1 dpmul.a . . . . . 6 𝐴 ∈ ℕ0
2 dpmul.b . . . . . 6 𝐵 ∈ ℕ0
31, 2deccl 11925 . . . . 5 𝐴𝐵 ∈ ℕ0
43nn0cni 11719 . . . 4 𝐴𝐵 ∈ ℂ
5 dpmul.c . . . . . 6 𝐶 ∈ ℕ0
6 dpmul.d . . . . . 6 𝐷 ∈ ℕ0
75, 6deccl 11925 . . . . 5 𝐶𝐷 ∈ ℕ0
87nn0cni 11719 . . . 4 𝐶𝐷 ∈ ℂ
9 10nn 11926 . . . . 5 10 ∈ ℕ
109nncni 11449 . . . 4 10 ∈ ℂ
119nnne0i 11479 . . . 4 10 ≠ 0
124, 8, 10, 11divdiri 11197 . . 3 ((𝐴𝐵 + 𝐶𝐷) / 10) = ((𝐴𝐵 / 10) + (𝐶𝐷 / 10))
13 dpadd.1 . . . 4 (𝐴𝐵 + 𝐶𝐷) = 𝐸𝐹
1413oveq1i 6985 . . 3 ((𝐴𝐵 + 𝐶𝐷) / 10) = (𝐸𝐹 / 10)
1512, 14eqtr3i 2799 . 2 ((𝐴𝐵 / 10) + (𝐶𝐷 / 10)) = (𝐸𝐹 / 10)
162nn0rei 11718 . . . 4 𝐵 ∈ ℝ
171, 16decdiv10 30343 . . 3 (𝐴𝐵 / 10) = (𝐴.𝐵)
186nn0rei 11718 . . . 4 𝐷 ∈ ℝ
195, 18decdiv10 30343 . . 3 (𝐶𝐷 / 10) = (𝐶.𝐷)
2017, 19oveq12i 6987 . 2 ((𝐴𝐵 / 10) + (𝐶𝐷 / 10)) = ((𝐴.𝐵) + (𝐶.𝐷))
21 dpmul.e . . 3 𝐸 ∈ ℕ0
22 dpadd.f . . . 4 𝐹 ∈ ℕ0
2322nn0rei 11718 . . 3 𝐹 ∈ ℝ
2421, 23decdiv10 30343 . 2 (𝐸𝐹 / 10) = (𝐸.𝐹)
2515, 20, 243eqtr3i 2805 1 ((𝐴.𝐵) + (𝐶.𝐷)) = (𝐸.𝐹)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1508  wcel 2051  (class class class)co 6975  0cc0 10334  1c1 10335   + caddc 10337   / cdiv 11097  0cn0 11706  cdc 11910  .cdp 30335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-resscn 10391  ax-1cn 10392  ax-icn 10393  ax-addcl 10394  ax-addrcl 10395  ax-mulcl 10396  ax-mulrcl 10397  ax-mulcom 10398  ax-addass 10399  ax-mulass 10400  ax-distr 10401  ax-i2m1 10402  ax-1ne0 10403  ax-1rid 10404  ax-rnegex 10405  ax-rrecex 10406  ax-cnre 10407  ax-pre-lttri 10408  ax-pre-lttrn 10409  ax-pre-ltadd 10410  ax-pre-mulgt0 10411
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-nel 3069  df-ral 3088  df-rex 3089  df-reu 3090  df-rmo 3091  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-pss 3840  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-tp 4441  df-op 4443  df-uni 4710  df-iun 4791  df-br 4927  df-opab 4989  df-mpt 5006  df-tr 5028  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-om 7396  df-wrecs 7749  df-recs 7811  df-rdg 7849  df-er 8088  df-en 8306  df-dom 8307  df-sdom 8308  df-pnf 10475  df-mnf 10476  df-xr 10477  df-ltxr 10478  df-le 10479  df-sub 10671  df-neg 10672  df-div 11098  df-nn 11439  df-2 11502  df-3 11503  df-4 11504  df-5 11505  df-6 11506  df-7 11507  df-8 11508  df-9 11509  df-n0 11707  df-dec 11911  df-dp2 30319  df-dp 30336
This theorem is referenced by:  threehalves  30362  hgt750lemd  31600  hgt750lem2  31604
  Copyright terms: Public domain W3C validator