MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exple1 Structured version   Visualization version   GIF version

Theorem exple1 13633
Description: A real between 0 and 1 inclusive raised to a nonnegative integer is less than or equal to 1. (Contributed by Paul Chapman, 29-Dec-2007.) (Revised by Mario Carneiro, 5-Jun-2014.)
Assertion
Ref Expression
exple1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ≤ 1)

Proof of Theorem exple1
StepHypRef Expression
1 simpl1 1192 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℝ)
2 0nn0 11992 . . . 4 0 ∈ ℕ0
32a1i 11 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ 𝑁 ∈ ℕ0) → 0 ∈ ℕ0)
4 simpr 488 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
5 nn0uz 12363 . . . 4 0 = (ℤ‘0)
64, 5eleqtrdi 2843 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ (ℤ‘0))
7 simpl2 1193 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ 𝑁 ∈ ℕ0) → 0 ≤ 𝐴)
8 simpl3 1194 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ 𝑁 ∈ ℕ0) → 𝐴 ≤ 1)
9 leexp2r 13631 . . 3 (((𝐴 ∈ ℝ ∧ 0 ∈ ℕ0𝑁 ∈ (ℤ‘0)) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑁) ≤ (𝐴↑0))
101, 3, 6, 7, 8, 9syl32anc 1379 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ≤ (𝐴↑0))
111recnd 10748 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
12 exp0 13526 . . 3 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
1311, 12syl 17 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ 𝑁 ∈ ℕ0) → (𝐴↑0) = 1)
1410, 13breqtrd 5057 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ≤ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2113   class class class wbr 5031  cfv 6340  (class class class)co 7171  cc 10614  cr 10615  0cc0 10616  1c1 10617  cle 10755  0cn0 11977  cuz 12325  cexp 13522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7480  ax-cnex 10672  ax-resscn 10673  ax-1cn 10674  ax-icn 10675  ax-addcl 10676  ax-addrcl 10677  ax-mulcl 10678  ax-mulrcl 10679  ax-mulcom 10680  ax-addass 10681  ax-mulass 10682  ax-distr 10683  ax-i2m1 10684  ax-1ne0 10685  ax-1rid 10686  ax-rnegex 10687  ax-rrecex 10688  ax-cnre 10689  ax-pre-lttri 10690  ax-pre-lttrn 10691  ax-pre-ltadd 10692  ax-pre-mulgt0 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3683  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7128  df-ov 7174  df-oprab 7175  df-mpo 7176  df-om 7601  df-2nd 7716  df-wrecs 7977  df-recs 8038  df-rdg 8076  df-er 8321  df-en 8557  df-dom 8558  df-sdom 8559  df-pnf 10756  df-mnf 10757  df-xr 10758  df-ltxr 10759  df-le 10760  df-sub 10951  df-neg 10952  df-nn 11718  df-n0 11978  df-z 12064  df-uz 12326  df-seq 13462  df-exp 13523
This theorem is referenced by:  abelthlem7  25185  ftalem5  25814  dchrisum0flblem1  26244  strlem3a  30187  knoppndvlem18  34347  stoweidlem1  43076  stoweidlem24  43099  stoweidlem45  43120
  Copyright terms: Public domain W3C validator