![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fldivmod | Structured version Visualization version GIF version |
Description: Expressing the floor of a division by the modulo operator. (Contributed by AV, 6-Jun-2020.) |
Ref | Expression |
---|---|
fldivmod | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) = ((𝐴 − (𝐴 mod 𝐵)) / 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rerpdivcl 12169 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ) | |
2 | 1 | flcld 12918 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℤ) |
3 | 2 | zcnd 11835 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℂ) |
4 | rpcn 12149 | . . . . . 6 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ) | |
5 | 4 | adantl 475 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℂ) |
6 | 3, 5 | mulcld 10397 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((⌊‘(𝐴 / 𝐵)) · 𝐵) ∈ ℂ) |
7 | modcl 12991 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) ∈ ℝ) | |
8 | 7 | recnd 10405 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) ∈ ℂ) |
9 | 6, 8 | pncand 10735 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) − (𝐴 mod 𝐵)) = ((⌊‘(𝐴 / 𝐵)) · 𝐵)) |
10 | 6, 8 | addcld 10396 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) ∈ ℂ) |
11 | 10, 8 | subcld 10734 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) − (𝐴 mod 𝐵)) ∈ ℂ) |
12 | rpne0 12155 | . . . . 5 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ≠ 0) | |
13 | 12 | adantl 475 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ≠ 0) |
14 | 11, 3, 5, 13 | divmul3d 11185 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((((((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) − (𝐴 mod 𝐵)) / 𝐵) = (⌊‘(𝐴 / 𝐵)) ↔ ((((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) − (𝐴 mod 𝐵)) = ((⌊‘(𝐴 / 𝐵)) · 𝐵))) |
15 | 9, 14 | mpbird 249 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) − (𝐴 mod 𝐵)) / 𝐵) = (⌊‘(𝐴 / 𝐵))) |
16 | flpmodeq 12992 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) = 𝐴) | |
17 | 16 | oveq1d 6937 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) − (𝐴 mod 𝐵)) = (𝐴 − (𝐴 mod 𝐵))) |
18 | 17 | oveq1d 6937 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) − (𝐴 mod 𝐵)) / 𝐵) = ((𝐴 − (𝐴 mod 𝐵)) / 𝐵)) |
19 | 15, 18 | eqtr3d 2816 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) = ((𝐴 − (𝐴 mod 𝐵)) / 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 ‘cfv 6135 (class class class)co 6922 ℂcc 10270 ℝcr 10271 0cc0 10272 + caddc 10275 · cmul 10277 − cmin 10606 / cdiv 11032 ℝ+crp 12137 ⌊cfl 12910 mod cmo 12987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-sup 8636 df-inf 8637 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-n0 11643 df-z 11729 df-uz 11993 df-rp 12138 df-fl 12912 df-mod 12988 |
This theorem is referenced by: dignn0flhalflem1 43428 |
Copyright terms: Public domain | W3C validator |