Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldivmod Structured version   Visualization version   GIF version

Theorem fldivmod 44754
Description: Expressing the floor of a division by the modulo operator. (Contributed by AV, 6-Jun-2020.)
Assertion
Ref Expression
fldivmod ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) = ((𝐴 − (𝐴 mod 𝐵)) / 𝐵))

Proof of Theorem fldivmod
StepHypRef Expression
1 rerpdivcl 12397 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
21flcld 13151 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℤ)
32zcnd 12066 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℂ)
4 rpcn 12377 . . . . . 6 (𝐵 ∈ ℝ+𝐵 ∈ ℂ)
54adantl 485 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℂ)
63, 5mulcld 10638 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((⌊‘(𝐴 / 𝐵)) · 𝐵) ∈ ℂ)
7 modcl 13224 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) ∈ ℝ)
87recnd 10646 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) ∈ ℂ)
96, 8pncand 10975 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) − (𝐴 mod 𝐵)) = ((⌊‘(𝐴 / 𝐵)) · 𝐵))
106, 8addcld 10637 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) ∈ ℂ)
1110, 8subcld 10974 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) − (𝐴 mod 𝐵)) ∈ ℂ)
12 rpne0 12383 . . . . 5 (𝐵 ∈ ℝ+𝐵 ≠ 0)
1312adantl 485 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ≠ 0)
1411, 3, 5, 13divmul3d 11427 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((((((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) − (𝐴 mod 𝐵)) / 𝐵) = (⌊‘(𝐴 / 𝐵)) ↔ ((((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) − (𝐴 mod 𝐵)) = ((⌊‘(𝐴 / 𝐵)) · 𝐵)))
159, 14mpbird 260 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) − (𝐴 mod 𝐵)) / 𝐵) = (⌊‘(𝐴 / 𝐵)))
16 flpmodeq 13225 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) = 𝐴)
1716oveq1d 7145 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) − (𝐴 mod 𝐵)) = (𝐴 − (𝐴 mod 𝐵)))
1817oveq1d 7145 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) − (𝐴 mod 𝐵)) / 𝐵) = ((𝐴 − (𝐴 mod 𝐵)) / 𝐵))
1915, 18eqtr3d 2858 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) = ((𝐴 − (𝐴 mod 𝐵)) / 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  wne 3007  cfv 6328  (class class class)co 7130  cc 10512  cr 10513  0cc0 10514   + caddc 10517   · cmul 10519  cmin 10847   / cdiv 11274  +crp 12367  cfl 13143   mod cmo 13220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-sup 8882  df-inf 8883  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-n0 11876  df-z 11960  df-uz 12222  df-rp 12368  df-fl 13145  df-mod 13221
This theorem is referenced by:  dignn0flhalflem1  44851
  Copyright terms: Public domain W3C validator