Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flsubz Structured version   Visualization version   GIF version

Theorem flsubz 46535
Description: An integer can be moved in and out of the floor of a difference. (Contributed by AV, 29-May-2020.)
Assertion
Ref Expression
flsubz ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘(𝐴𝑁)) = ((⌊‘𝐴) − 𝑁))

Proof of Theorem flsubz
StepHypRef Expression
1 recn 11137 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 zcn 12500 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
3 negsub 11445 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐴 + -𝑁) = (𝐴𝑁))
41, 2, 3syl2an 596 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (𝐴 + -𝑁) = (𝐴𝑁))
54eqcomd 2742 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) = (𝐴 + -𝑁))
65fveq2d 6843 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘(𝐴𝑁)) = (⌊‘(𝐴 + -𝑁)))
7 znegcl 12534 . . 3 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
8 fladdz 13722 . . 3 ((𝐴 ∈ ℝ ∧ -𝑁 ∈ ℤ) → (⌊‘(𝐴 + -𝑁)) = ((⌊‘𝐴) + -𝑁))
97, 8sylan2 593 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘(𝐴 + -𝑁)) = ((⌊‘𝐴) + -𝑁))
10 reflcl 13693 . . . 4 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
1110recnd 11179 . . 3 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℂ)
12 negsub 11445 . . 3 (((⌊‘𝐴) ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((⌊‘𝐴) + -𝑁) = ((⌊‘𝐴) − 𝑁))
1311, 2, 12syl2an 596 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → ((⌊‘𝐴) + -𝑁) = ((⌊‘𝐴) − 𝑁))
146, 9, 133eqtrd 2780 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘(𝐴𝑁)) = ((⌊‘𝐴) − 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  cfv 6493  (class class class)co 7353  cc 11045  cr 11046   + caddc 11050  cmin 11381  -cneg 11382  cz 12495  cfl 13687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7668  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124  ax-pre-sup 11125
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-riota 7309  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7799  df-2nd 7918  df-frecs 8208  df-wrecs 8239  df-recs 8313  df-rdg 8352  df-er 8644  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9374  df-inf 9375  df-pnf 11187  df-mnf 11188  df-xr 11189  df-ltxr 11190  df-le 11191  df-sub 11383  df-neg 11384  df-nn 12150  df-n0 12410  df-z 12496  df-uz 12760  df-fl 13689
This theorem is referenced by:  blennngt2o2  46610  blennn0e2  46612  dignn0flhalflem2  46634
  Copyright terms: Public domain W3C validator