![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > flsubz | Structured version Visualization version GIF version |
Description: An integer can be moved in and out of the floor of a difference. (Contributed by AV, 29-May-2020.) |
Ref | Expression |
---|---|
flsubz | ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘(𝐴 − 𝑁)) = ((⌊‘𝐴) − 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn 11239 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
2 | zcn 12609 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
3 | negsub 11549 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐴 + -𝑁) = (𝐴 − 𝑁)) | |
4 | 1, 2, 3 | syl2an 594 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (𝐴 + -𝑁) = (𝐴 − 𝑁)) |
5 | 4 | eqcomd 2732 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (𝐴 − 𝑁) = (𝐴 + -𝑁)) |
6 | 5 | fveq2d 6897 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘(𝐴 − 𝑁)) = (⌊‘(𝐴 + -𝑁))) |
7 | znegcl 12643 | . . 3 ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) | |
8 | fladdz 13839 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ -𝑁 ∈ ℤ) → (⌊‘(𝐴 + -𝑁)) = ((⌊‘𝐴) + -𝑁)) | |
9 | 7, 8 | sylan2 591 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘(𝐴 + -𝑁)) = ((⌊‘𝐴) + -𝑁)) |
10 | reflcl 13810 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ) | |
11 | 10 | recnd 11283 | . . 3 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℂ) |
12 | negsub 11549 | . . 3 ⊢ (((⌊‘𝐴) ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((⌊‘𝐴) + -𝑁) = ((⌊‘𝐴) − 𝑁)) | |
13 | 11, 2, 12 | syl2an 594 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → ((⌊‘𝐴) + -𝑁) = ((⌊‘𝐴) − 𝑁)) |
14 | 6, 9, 13 | 3eqtrd 2770 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘(𝐴 − 𝑁)) = ((⌊‘𝐴) − 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ‘cfv 6546 (class class class)co 7416 ℂcc 11147 ℝcr 11148 + caddc 11152 − cmin 11485 -cneg 11486 ℤcz 12604 ⌊cfl 13804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 ax-pre-sup 11227 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-sup 9478 df-inf 9479 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-nn 12259 df-n0 12519 df-z 12605 df-uz 12869 df-fl 13806 |
This theorem is referenced by: blennngt2o2 48016 blennn0e2 48018 dignn0flhalflem2 48040 |
Copyright terms: Public domain | W3C validator |