| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mod0mul | Structured version Visualization version GIF version | ||
| Description: If an integer is 0 modulo a positive integer, this integer must be a multiple of the modulus. (Contributed by AV, 7-Jun-2020.) |
| Ref | Expression |
|---|---|
| mod0mul | ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod 𝑁) = 0 → ∃𝑥 ∈ ℤ 𝐴 = (𝑥 · 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre 12540 | . . 3 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
| 2 | nnrp 12970 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+) | |
| 3 | mod0 13845 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((𝐴 mod 𝑁) = 0 ↔ (𝐴 / 𝑁) ∈ ℤ)) | |
| 4 | 1, 2, 3 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod 𝑁) = 0 ↔ (𝐴 / 𝑁) ∈ ℤ)) |
| 5 | simpr 484 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 / 𝑁) ∈ ℤ) → (𝐴 / 𝑁) ∈ ℤ) | |
| 6 | oveq1 7397 | . . . . . 6 ⊢ (𝑥 = (𝐴 / 𝑁) → (𝑥 · 𝑁) = ((𝐴 / 𝑁) · 𝑁)) | |
| 7 | 6 | eqeq2d 2741 | . . . . 5 ⊢ (𝑥 = (𝐴 / 𝑁) → (𝐴 = (𝑥 · 𝑁) ↔ 𝐴 = ((𝐴 / 𝑁) · 𝑁))) |
| 8 | 7 | adantl 481 | . . . 4 ⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 / 𝑁) ∈ ℤ) ∧ 𝑥 = (𝐴 / 𝑁)) → (𝐴 = (𝑥 · 𝑁) ↔ 𝐴 = ((𝐴 / 𝑁) · 𝑁))) |
| 9 | zcn 12541 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
| 10 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℂ) |
| 11 | nncn 12201 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
| 12 | 11 | adantl 481 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ) |
| 13 | nnne0 12227 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | |
| 14 | 13 | adantl 481 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0) |
| 15 | 10, 12, 14 | divcan1d 11966 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 / 𝑁) · 𝑁) = 𝐴) |
| 16 | 15 | adantr 480 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 / 𝑁) ∈ ℤ) → ((𝐴 / 𝑁) · 𝑁) = 𝐴) |
| 17 | 16 | eqcomd 2736 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 / 𝑁) ∈ ℤ) → 𝐴 = ((𝐴 / 𝑁) · 𝑁)) |
| 18 | 5, 8, 17 | rspcedvd 3593 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 / 𝑁) ∈ ℤ) → ∃𝑥 ∈ ℤ 𝐴 = (𝑥 · 𝑁)) |
| 19 | 18 | ex 412 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 / 𝑁) ∈ ℤ → ∃𝑥 ∈ ℤ 𝐴 = (𝑥 · 𝑁))) |
| 20 | 4, 19 | sylbid 240 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod 𝑁) = 0 → ∃𝑥 ∈ ℤ 𝐴 = (𝑥 · 𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∃wrex 3054 (class class class)co 7390 ℂcc 11073 ℝcr 11074 0cc0 11075 · cmul 11080 / cdiv 11842 ℕcn 12193 ℤcz 12536 ℝ+crp 12958 mod cmo 13838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fl 13761 df-mod 13839 |
| This theorem is referenced by: m1modmmod 47363 modlt0b 47368 |
| Copyright terms: Public domain | W3C validator |