Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2106
‘cfv 6540 ℝcr 11105 ℤcz 12554
⌊cfl 13751 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-inf 9434 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555
df-uz 12819 df-fl 13753 |
This theorem is referenced by: flge
13766 flwordi
13773 flword2
13774 fladdz
13786 flhalf
13791 fldiv4p1lem1div2
13796 fldiv4lem1div2uz2
13797 fldiv4lem1div2
13798 ceicl
13802 quoremz
13816 intfracq
13820 fldiv
13821 moddiffl
13843 moddifz
13844 zmodcl
13852 modadd1
13869 modmuladd
13874 modmul1
13885 modsubdir
13901 iexpcyc
14167 absrdbnd
15284 limsupgre
15421 climrlim2
15487 dvdsmod
16268 divalgmod
16345 flodddiv4t2lthalf
16355 bitsp1
16368 bitsmod
16373 bitscmp
16375 bitsuz
16411 modgcd
16470 bezoutlem3
16479 isprm7
16641 hashdvds
16704 prmdiv
16714 odzdvds
16724 fldivp1
16826 pcfac
16828 pcbc
16829 prmreclem4
16848 vdwnnlem3
16926 mulgmodid
18987 odmod
19408 gexdvds
19446 zringlpirlem3
21025 zcld
24320 ovolunlem1a
25004 opnmbllem
25109 mbfi1fseqlem5
25228 dvfsumlem1
25534 dvfsumlem3
25536 sineq0
26024 efif1olem2
26043 ppiltx
26670 dvdsflf1o
26680 ppiub
26696 fsumvma2
26706 logfac2
26709 chpchtsum
26711 pcbcctr
26768 bposlem1
26776 bposlem3
26778 bposlem4
26779 bposlem5
26780 bposlem6
26781 gausslemma2dlem3
26860 gausslemma2dlem4
26861 gausslemma2dlem5
26863 lgseisenlem4
26870 lgseisen
26871 lgsquadlem1
26872 lgsquadlem2
26873 2lgslem1
26886 2lgslem2
26887 chebbnd1lem2
26962 chebbnd1lem3
26963 rplogsumlem2
26977 rpvmasumlem
26979 dchrisumlema
26980 dchrisumlem3
26983 dchrvmasumiflem1
26993 dchrisum0lem1
27008 rplogsum
27019 mulog2sumlem2
27027 pntrsumo1
27057 pntrlog2bndlem2
27070 pntrlog2bndlem4
27072 pntpbnd1
27078 pntpbnd2
27079 pntlemg
27090 pntlemq
27093 pntlemr
27094 pntlemf
27097 ostth2lem2
27126 dya2ub
33257 dya2icoseg
33264 dnibndlem13
35354 knoppndvlem19
35394 ltflcei
36464 opnmbllem0
36512 itg2addnclem2
36528 cntotbnd
36652 aks4d1p1p3
40922 aks4d1p1p2
40923 aks4d1p1p4
40924 aks4d1p3
40931 aks4d1p7d1
40935 aks4d1p7
40936 aks4d1p8
40940 aks4d1p9
40941 irrapxlem1
41545 irrapxlem2
41546 irrapxlem3
41547 irrapxlem4
41548 pellexlem5
41556 pellfund14
41621 hashnzfz2
43065 hashnzfzclim
43066 sineq0ALT
43683 lefldiveq
43988 ltmod
44340 ioodvbdlimc1lem2
44634 ioodvbdlimc2lem
44636 dirkertrigeqlem3
44802 dirkertrigeq
44803 dirkercncflem4
44808 fourierdlem4
44813 fourierdlem7
44816 fourierdlem19
44828 fourierdlem26
44835 fourierdlem41
44850 fourierdlem47
44855 fourierdlem48
44856 fourierdlem49
44857 fourierdlem51
44859 fourierdlem63
44871 fourierdlem65
44873 fourierdlem71
44879 fourierdlem89
44897 fourierdlem90
44898 fourierdlem91
44899 lighneallem2
46260 fldivmod
47157 modn0mul
47159 fllogbd
47199 fldivexpfllog2
47204 logbpw2m1
47206 fllog2
47207 nnpw2blen
47219 blen1b
47227 nnolog2flm1
47229 blennngt2o2
47231 blennn0e2
47233 digvalnn0
47238 dig2nn1st
47244 dig2nn0
47250 dig2bits
47253 dignn0flhalflem2
47255 |