Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2107
‘cfv 6544 ℝcr 11109 ℤcz 12558
⌊cfl 13755 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-sup 9437 df-inf 9438 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-n0 12473 df-z 12559
df-uz 12823 df-fl 13757 |
This theorem is referenced by: flge
13770 flwordi
13777 flword2
13778 fladdz
13790 flhalf
13795 fldiv4p1lem1div2
13800 fldiv4lem1div2uz2
13801 fldiv4lem1div2
13802 ceicl
13806 quoremz
13820 intfracq
13824 fldiv
13825 moddiffl
13847 moddifz
13848 zmodcl
13856 modadd1
13873 modmuladd
13878 modmul1
13889 modsubdir
13905 iexpcyc
14171 absrdbnd
15288 limsupgre
15425 climrlim2
15491 dvdsmod
16272 divalgmod
16349 flodddiv4t2lthalf
16359 bitsp1
16372 bitsmod
16377 bitscmp
16379 bitsuz
16415 modgcd
16474 bezoutlem3
16483 isprm7
16645 hashdvds
16708 prmdiv
16718 odzdvds
16728 fldivp1
16830 pcfac
16832 pcbc
16833 prmreclem4
16852 vdwnnlem3
16930 mulgmodid
18993 odmod
19414 gexdvds
19452 zringlpirlem3
21034 zcld
24329 ovolunlem1a
25013 opnmbllem
25118 mbfi1fseqlem5
25237 dvfsumlem1
25543 dvfsumlem3
25545 sineq0
26033 efif1olem2
26052 ppiltx
26681 dvdsflf1o
26691 ppiub
26707 fsumvma2
26717 logfac2
26720 chpchtsum
26722 pcbcctr
26779 bposlem1
26787 bposlem3
26789 bposlem4
26790 bposlem5
26791 bposlem6
26792 gausslemma2dlem3
26871 gausslemma2dlem4
26872 gausslemma2dlem5
26874 lgseisenlem4
26881 lgseisen
26882 lgsquadlem1
26883 lgsquadlem2
26884 2lgslem1
26897 2lgslem2
26898 chebbnd1lem2
26973 chebbnd1lem3
26974 rplogsumlem2
26988 rpvmasumlem
26990 dchrisumlema
26991 dchrisumlem3
26994 dchrvmasumiflem1
27004 dchrisum0lem1
27019 rplogsum
27030 mulog2sumlem2
27038 pntrsumo1
27068 pntrlog2bndlem2
27081 pntrlog2bndlem4
27083 pntpbnd1
27089 pntpbnd2
27090 pntlemg
27101 pntlemq
27104 pntlemr
27105 pntlemf
27108 ostth2lem2
27137 dya2ub
33269 dya2icoseg
33276 dnibndlem13
35366 knoppndvlem19
35406 ltflcei
36476 opnmbllem0
36524 itg2addnclem2
36540 cntotbnd
36664 aks4d1p1p3
40934 aks4d1p1p2
40935 aks4d1p1p4
40936 aks4d1p3
40943 aks4d1p7d1
40947 aks4d1p7
40948 aks4d1p8
40952 aks4d1p9
40953 irrapxlem1
41560 irrapxlem2
41561 irrapxlem3
41562 irrapxlem4
41563 pellexlem5
41571 pellfund14
41636 hashnzfz2
43080 hashnzfzclim
43081 sineq0ALT
43698 lefldiveq
44002 ltmod
44354 ioodvbdlimc1lem2
44648 ioodvbdlimc2lem
44650 dirkertrigeqlem3
44816 dirkertrigeq
44817 dirkercncflem4
44822 fourierdlem4
44827 fourierdlem7
44830 fourierdlem19
44842 fourierdlem26
44849 fourierdlem41
44864 fourierdlem47
44869 fourierdlem48
44870 fourierdlem49
44871 fourierdlem51
44873 fourierdlem63
44885 fourierdlem65
44887 fourierdlem71
44893 fourierdlem89
44911 fourierdlem90
44912 fourierdlem91
44913 lighneallem2
46274 fldivmod
47204 modn0mul
47206 fllogbd
47246 fldivexpfllog2
47251 logbpw2m1
47253 fllog2
47254 nnpw2blen
47266 blen1b
47274 nnolog2flm1
47276 blennngt2o2
47278 blennn0e2
47280 digvalnn0
47285 dig2nn1st
47291 dig2nn0
47297 dig2bits
47300 dignn0flhalflem2
47302 |