Proof of Theorem quoremz
Step | Hyp | Ref
| Expression |
1 | | quorem.1 |
. . 3
⊢ 𝑄 = (⌊‘(𝐴 / 𝐵)) |
2 | | zre 12323 |
. . . . . 6
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
ℝ) |
3 | 2 | adantr 481 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈
ℝ) |
4 | | nnre 11980 |
. . . . . 6
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℝ) |
5 | 4 | adantl 482 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈
ℝ) |
6 | | nnne0 12007 |
. . . . . 6
⊢ (𝐵 ∈ ℕ → 𝐵 ≠ 0) |
7 | 6 | adantl 482 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ≠ 0) |
8 | 3, 5, 7 | redivcld 11803 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℝ) |
9 | 8 | flcld 13518 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) →
(⌊‘(𝐴 / 𝐵)) ∈
ℤ) |
10 | 1, 9 | eqeltrid 2843 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝑄 ∈
ℤ) |
11 | | quorem.2 |
. . 3
⊢ 𝑅 = (𝐴 − (𝐵 · 𝑄)) |
12 | 10 | zcnd 12427 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝑄 ∈
ℂ) |
13 | | nncn 11981 |
. . . . . . . 8
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℂ) |
14 | 13 | adantl 482 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈
ℂ) |
15 | 12, 14, 7 | divcan3d 11756 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐵 · 𝑄) / 𝐵) = 𝑄) |
16 | | flle 13519 |
. . . . . . . 8
⊢ ((𝐴 / 𝐵) ∈ ℝ →
(⌊‘(𝐴 / 𝐵)) ≤ (𝐴 / 𝐵)) |
17 | 8, 16 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) →
(⌊‘(𝐴 / 𝐵)) ≤ (𝐴 / 𝐵)) |
18 | 1, 17 | eqbrtrid 5109 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝑄 ≤ (𝐴 / 𝐵)) |
19 | 15, 18 | eqbrtrd 5096 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐵 · 𝑄) / 𝐵) ≤ (𝐴 / 𝐵)) |
20 | | nnz 12342 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℤ) |
21 | 20 | adantl 482 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈
ℤ) |
22 | 21, 10 | zmulcld 12432 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 · 𝑄) ∈ ℤ) |
23 | 22 | zred 12426 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 · 𝑄) ∈ ℝ) |
24 | | nngt0 12004 |
. . . . . . 7
⊢ (𝐵 ∈ ℕ → 0 <
𝐵) |
25 | 24 | adantl 482 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 0 <
𝐵) |
26 | | lediv1 11840 |
. . . . . 6
⊢ (((𝐵 · 𝑄) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐵 · 𝑄) ≤ 𝐴 ↔ ((𝐵 · 𝑄) / 𝐵) ≤ (𝐴 / 𝐵))) |
27 | 23, 3, 5, 25, 26 | syl112anc 1373 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐵 · 𝑄) ≤ 𝐴 ↔ ((𝐵 · 𝑄) / 𝐵) ≤ (𝐴 / 𝐵))) |
28 | 19, 27 | mpbird 256 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 · 𝑄) ≤ 𝐴) |
29 | | simpl 483 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈
ℤ) |
30 | | znn0sub 12367 |
. . . . 5
⊢ (((𝐵 · 𝑄) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐵 · 𝑄) ≤ 𝐴 ↔ (𝐴 − (𝐵 · 𝑄)) ∈
ℕ0)) |
31 | 22, 29, 30 | syl2anc 584 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐵 · 𝑄) ≤ 𝐴 ↔ (𝐴 − (𝐵 · 𝑄)) ∈
ℕ0)) |
32 | 28, 31 | mpbid 231 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 − (𝐵 · 𝑄)) ∈
ℕ0) |
33 | 11, 32 | eqeltrid 2843 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝑅 ∈
ℕ0) |
34 | 1 | oveq2i 7286 |
. . . . . 6
⊢ ((𝐴 / 𝐵) − 𝑄) = ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) |
35 | | fraclt1 13522 |
. . . . . . 7
⊢ ((𝐴 / 𝐵) ∈ ℝ → ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < 1) |
36 | 8, 35 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < 1) |
37 | 34, 36 | eqbrtrid 5109 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) − 𝑄) < 1) |
38 | 11 | oveq1i 7285 |
. . . . . 6
⊢ (𝑅 / 𝐵) = ((𝐴 − (𝐵 · 𝑄)) / 𝐵) |
39 | | zcn 12324 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
ℂ) |
40 | 39 | adantr 481 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈
ℂ) |
41 | 22 | zcnd 12427 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 · 𝑄) ∈ ℂ) |
42 | 13, 6 | jca 512 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℕ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) |
43 | 42 | adantl 482 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) |
44 | | divsubdir 11669 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ (𝐵 · 𝑄) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝐴 − (𝐵 · 𝑄)) / 𝐵) = ((𝐴 / 𝐵) − ((𝐵 · 𝑄) / 𝐵))) |
45 | 40, 41, 43, 44 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐴 − (𝐵 · 𝑄)) / 𝐵) = ((𝐴 / 𝐵) − ((𝐵 · 𝑄) / 𝐵))) |
46 | 15 | oveq2d 7291 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) − ((𝐵 · 𝑄) / 𝐵)) = ((𝐴 / 𝐵) − 𝑄)) |
47 | 45, 46 | eqtrd 2778 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐴 − (𝐵 · 𝑄)) / 𝐵) = ((𝐴 / 𝐵) − 𝑄)) |
48 | 38, 47 | eqtrid 2790 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝑅 / 𝐵) = ((𝐴 / 𝐵) − 𝑄)) |
49 | 13, 6 | dividd 11749 |
. . . . . 6
⊢ (𝐵 ∈ ℕ → (𝐵 / 𝐵) = 1) |
50 | 49 | adantl 482 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 / 𝐵) = 1) |
51 | 37, 48, 50 | 3brtr4d 5106 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝑅 / 𝐵) < (𝐵 / 𝐵)) |
52 | 33 | nn0red 12294 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝑅 ∈
ℝ) |
53 | | ltdiv1 11839 |
. . . . 5
⊢ ((𝑅 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) → (𝑅 < 𝐵 ↔ (𝑅 / 𝐵) < (𝐵 / 𝐵))) |
54 | 52, 5, 5, 25, 53 | syl112anc 1373 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝑅 < 𝐵 ↔ (𝑅 / 𝐵) < (𝐵 / 𝐵))) |
55 | 51, 54 | mpbird 256 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝑅 < 𝐵) |
56 | 11 | oveq2i 7286 |
. . . 4
⊢ ((𝐵 · 𝑄) + 𝑅) = ((𝐵 · 𝑄) + (𝐴 − (𝐵 · 𝑄))) |
57 | 41, 40 | pncan3d 11335 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐵 · 𝑄) + (𝐴 − (𝐵 · 𝑄))) = 𝐴) |
58 | 56, 57 | eqtr2id 2791 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐴 = ((𝐵 · 𝑄) + 𝑅)) |
59 | 55, 58 | jca 512 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝑅 < 𝐵 ∧ 𝐴 = ((𝐵 · 𝑄) + 𝑅))) |
60 | 10, 33, 59 | jca31 515 |
1
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝑄 ∈ ℤ ∧ 𝑅 ∈ ℕ0)
∧ (𝑅 < 𝐵 ∧ 𝐴 = ((𝐵 · 𝑄) + 𝑅)))) |