MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quoremz Structured version   Visualization version   GIF version

Theorem quoremz 13756
Description: Quotient and remainder of an integer divided by a positive integer. TODO - is this really needed for anything? Should we use mod to simplify it? Remark (AV): This is a special case of divalg 16311. (Contributed by NM, 14-Aug-2008.)
Hypotheses
Ref Expression
quorem.1 𝑄 = (⌊‘(𝐴 / 𝐵))
quorem.2 𝑅 = (𝐴 − (𝐵 · 𝑄))
Assertion
Ref Expression
quoremz ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝑄 ∈ ℤ ∧ 𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵𝐴 = ((𝐵 · 𝑄) + 𝑅))))

Proof of Theorem quoremz
StepHypRef Expression
1 quorem.1 . . 3 𝑄 = (⌊‘(𝐴 / 𝐵))
2 zre 12469 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
32adantr 480 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℝ)
4 nnre 12129 . . . . . 6 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
54adantl 481 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℝ)
6 nnne0 12156 . . . . . 6 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
76adantl 481 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ≠ 0)
83, 5, 7redivcld 11946 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℝ)
98flcld 13699 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (⌊‘(𝐴 / 𝐵)) ∈ ℤ)
101, 9eqeltrid 2835 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝑄 ∈ ℤ)
11 quorem.2 . . 3 𝑅 = (𝐴 − (𝐵 · 𝑄))
1210zcnd 12575 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝑄 ∈ ℂ)
13 nncn 12130 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
1413adantl 481 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℂ)
1512, 14, 7divcan3d 11899 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐵 · 𝑄) / 𝐵) = 𝑄)
16 flle 13700 . . . . . . . 8 ((𝐴 / 𝐵) ∈ ℝ → (⌊‘(𝐴 / 𝐵)) ≤ (𝐴 / 𝐵))
178, 16syl 17 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (⌊‘(𝐴 / 𝐵)) ≤ (𝐴 / 𝐵))
181, 17eqbrtrid 5126 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝑄 ≤ (𝐴 / 𝐵))
1915, 18eqbrtrd 5113 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐵 · 𝑄) / 𝐵) ≤ (𝐴 / 𝐵))
20 nnz 12486 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
2120adantl 481 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℤ)
2221, 10zmulcld 12580 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 · 𝑄) ∈ ℤ)
2322zred 12574 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 · 𝑄) ∈ ℝ)
24 nngt0 12153 . . . . . . 7 (𝐵 ∈ ℕ → 0 < 𝐵)
2524adantl 481 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 0 < 𝐵)
26 lediv1 11984 . . . . . 6 (((𝐵 · 𝑄) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐵 · 𝑄) ≤ 𝐴 ↔ ((𝐵 · 𝑄) / 𝐵) ≤ (𝐴 / 𝐵)))
2723, 3, 5, 25, 26syl112anc 1376 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐵 · 𝑄) ≤ 𝐴 ↔ ((𝐵 · 𝑄) / 𝐵) ≤ (𝐴 / 𝐵)))
2819, 27mpbird 257 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 · 𝑄) ≤ 𝐴)
29 simpl 482 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ)
30 znn0sub 12516 . . . . 5 (((𝐵 · 𝑄) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐵 · 𝑄) ≤ 𝐴 ↔ (𝐴 − (𝐵 · 𝑄)) ∈ ℕ0))
3122, 29, 30syl2anc 584 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐵 · 𝑄) ≤ 𝐴 ↔ (𝐴 − (𝐵 · 𝑄)) ∈ ℕ0))
3228, 31mpbid 232 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 − (𝐵 · 𝑄)) ∈ ℕ0)
3311, 32eqeltrid 2835 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝑅 ∈ ℕ0)
341oveq2i 7357 . . . . . 6 ((𝐴 / 𝐵) − 𝑄) = ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵)))
35 fraclt1 13703 . . . . . . 7 ((𝐴 / 𝐵) ∈ ℝ → ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < 1)
368, 35syl 17 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < 1)
3734, 36eqbrtrid 5126 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) − 𝑄) < 1)
3811oveq1i 7356 . . . . . 6 (𝑅 / 𝐵) = ((𝐴 − (𝐵 · 𝑄)) / 𝐵)
39 zcn 12470 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
4039adantr 480 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℂ)
4122zcnd 12575 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 · 𝑄) ∈ ℂ)
4213, 6jca 511 . . . . . . . . 9 (𝐵 ∈ ℕ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
4342adantl 481 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
44 divsubdir 11812 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝐵 · 𝑄) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝐴 − (𝐵 · 𝑄)) / 𝐵) = ((𝐴 / 𝐵) − ((𝐵 · 𝑄) / 𝐵)))
4540, 41, 43, 44syl3anc 1373 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐴 − (𝐵 · 𝑄)) / 𝐵) = ((𝐴 / 𝐵) − ((𝐵 · 𝑄) / 𝐵)))
4615oveq2d 7362 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) − ((𝐵 · 𝑄) / 𝐵)) = ((𝐴 / 𝐵) − 𝑄))
4745, 46eqtrd 2766 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐴 − (𝐵 · 𝑄)) / 𝐵) = ((𝐴 / 𝐵) − 𝑄))
4838, 47eqtrid 2778 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝑅 / 𝐵) = ((𝐴 / 𝐵) − 𝑄))
4913, 6dividd 11892 . . . . . 6 (𝐵 ∈ ℕ → (𝐵 / 𝐵) = 1)
5049adantl 481 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 / 𝐵) = 1)
5137, 48, 503brtr4d 5123 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝑅 / 𝐵) < (𝐵 / 𝐵))
5233nn0red 12440 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝑅 ∈ ℝ)
53 ltdiv1 11983 . . . . 5 ((𝑅 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝑅 < 𝐵 ↔ (𝑅 / 𝐵) < (𝐵 / 𝐵)))
5452, 5, 5, 25, 53syl112anc 1376 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝑅 < 𝐵 ↔ (𝑅 / 𝐵) < (𝐵 / 𝐵)))
5551, 54mpbird 257 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝑅 < 𝐵)
5611oveq2i 7357 . . . 4 ((𝐵 · 𝑄) + 𝑅) = ((𝐵 · 𝑄) + (𝐴 − (𝐵 · 𝑄)))
5741, 40pncan3d 11472 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐵 · 𝑄) + (𝐴 − (𝐵 · 𝑄))) = 𝐴)
5856, 57eqtr2id 2779 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐴 = ((𝐵 · 𝑄) + 𝑅))
5955, 58jca 511 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝑅 < 𝐵𝐴 = ((𝐵 · 𝑄) + 𝑅)))
6010, 33, 59jca31 514 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝑄 ∈ ℤ ∧ 𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵𝐴 = ((𝐵 · 𝑄) + 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5091  cfv 6481  (class class class)co 7346  cc 11001  cr 11002  0cc0 11003  1c1 11004   + caddc 11006   · cmul 11008   < clt 11143  cle 11144  cmin 11341   / cdiv 11771  cn 12122  0cn0 12378  cz 12465  cfl 13691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-n0 12379  df-z 12466  df-uz 12730  df-fl 13693
This theorem is referenced by:  quoremnn0  13757
  Copyright terms: Public domain W3C validator