MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quoremz Structured version   Visualization version   GIF version

Theorem quoremz 13906
Description: Quotient and remainder of an integer divided by a positive integer. TODO - is this really needed for anything? Should we use mod to simplify it? Remark (AV): This is a special case of divalg 16451. (Contributed by NM, 14-Aug-2008.)
Hypotheses
Ref Expression
quorem.1 𝑄 = (⌊‘(𝐴 / 𝐵))
quorem.2 𝑅 = (𝐴 − (𝐵 · 𝑄))
Assertion
Ref Expression
quoremz ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝑄 ∈ ℤ ∧ 𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵𝐴 = ((𝐵 · 𝑄) + 𝑅))))

Proof of Theorem quoremz
StepHypRef Expression
1 quorem.1 . . 3 𝑄 = (⌊‘(𝐴 / 𝐵))
2 zre 12643 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
32adantr 480 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℝ)
4 nnre 12300 . . . . . 6 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
54adantl 481 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℝ)
6 nnne0 12327 . . . . . 6 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
76adantl 481 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ≠ 0)
83, 5, 7redivcld 12122 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℝ)
98flcld 13849 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (⌊‘(𝐴 / 𝐵)) ∈ ℤ)
101, 9eqeltrid 2848 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝑄 ∈ ℤ)
11 quorem.2 . . 3 𝑅 = (𝐴 − (𝐵 · 𝑄))
1210zcnd 12748 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝑄 ∈ ℂ)
13 nncn 12301 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
1413adantl 481 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℂ)
1512, 14, 7divcan3d 12075 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐵 · 𝑄) / 𝐵) = 𝑄)
16 flle 13850 . . . . . . . 8 ((𝐴 / 𝐵) ∈ ℝ → (⌊‘(𝐴 / 𝐵)) ≤ (𝐴 / 𝐵))
178, 16syl 17 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (⌊‘(𝐴 / 𝐵)) ≤ (𝐴 / 𝐵))
181, 17eqbrtrid 5201 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝑄 ≤ (𝐴 / 𝐵))
1915, 18eqbrtrd 5188 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐵 · 𝑄) / 𝐵) ≤ (𝐴 / 𝐵))
20 nnz 12660 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
2120adantl 481 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℤ)
2221, 10zmulcld 12753 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 · 𝑄) ∈ ℤ)
2322zred 12747 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 · 𝑄) ∈ ℝ)
24 nngt0 12324 . . . . . . 7 (𝐵 ∈ ℕ → 0 < 𝐵)
2524adantl 481 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 0 < 𝐵)
26 lediv1 12160 . . . . . 6 (((𝐵 · 𝑄) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐵 · 𝑄) ≤ 𝐴 ↔ ((𝐵 · 𝑄) / 𝐵) ≤ (𝐴 / 𝐵)))
2723, 3, 5, 25, 26syl112anc 1374 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐵 · 𝑄) ≤ 𝐴 ↔ ((𝐵 · 𝑄) / 𝐵) ≤ (𝐴 / 𝐵)))
2819, 27mpbird 257 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 · 𝑄) ≤ 𝐴)
29 simpl 482 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ)
30 znn0sub 12690 . . . . 5 (((𝐵 · 𝑄) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐵 · 𝑄) ≤ 𝐴 ↔ (𝐴 − (𝐵 · 𝑄)) ∈ ℕ0))
3122, 29, 30syl2anc 583 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐵 · 𝑄) ≤ 𝐴 ↔ (𝐴 − (𝐵 · 𝑄)) ∈ ℕ0))
3228, 31mpbid 232 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 − (𝐵 · 𝑄)) ∈ ℕ0)
3311, 32eqeltrid 2848 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝑅 ∈ ℕ0)
341oveq2i 7459 . . . . . 6 ((𝐴 / 𝐵) − 𝑄) = ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵)))
35 fraclt1 13853 . . . . . . 7 ((𝐴 / 𝐵) ∈ ℝ → ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < 1)
368, 35syl 17 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < 1)
3734, 36eqbrtrid 5201 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) − 𝑄) < 1)
3811oveq1i 7458 . . . . . 6 (𝑅 / 𝐵) = ((𝐴 − (𝐵 · 𝑄)) / 𝐵)
39 zcn 12644 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
4039adantr 480 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℂ)
4122zcnd 12748 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 · 𝑄) ∈ ℂ)
4213, 6jca 511 . . . . . . . . 9 (𝐵 ∈ ℕ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
4342adantl 481 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
44 divsubdir 11988 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝐵 · 𝑄) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝐴 − (𝐵 · 𝑄)) / 𝐵) = ((𝐴 / 𝐵) − ((𝐵 · 𝑄) / 𝐵)))
4540, 41, 43, 44syl3anc 1371 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐴 − (𝐵 · 𝑄)) / 𝐵) = ((𝐴 / 𝐵) − ((𝐵 · 𝑄) / 𝐵)))
4615oveq2d 7464 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) − ((𝐵 · 𝑄) / 𝐵)) = ((𝐴 / 𝐵) − 𝑄))
4745, 46eqtrd 2780 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐴 − (𝐵 · 𝑄)) / 𝐵) = ((𝐴 / 𝐵) − 𝑄))
4838, 47eqtrid 2792 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝑅 / 𝐵) = ((𝐴 / 𝐵) − 𝑄))
4913, 6dividd 12068 . . . . . 6 (𝐵 ∈ ℕ → (𝐵 / 𝐵) = 1)
5049adantl 481 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 / 𝐵) = 1)
5137, 48, 503brtr4d 5198 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝑅 / 𝐵) < (𝐵 / 𝐵))
5233nn0red 12614 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝑅 ∈ ℝ)
53 ltdiv1 12159 . . . . 5 ((𝑅 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝑅 < 𝐵 ↔ (𝑅 / 𝐵) < (𝐵 / 𝐵)))
5452, 5, 5, 25, 53syl112anc 1374 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝑅 < 𝐵 ↔ (𝑅 / 𝐵) < (𝐵 / 𝐵)))
5551, 54mpbird 257 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝑅 < 𝐵)
5611oveq2i 7459 . . . 4 ((𝐵 · 𝑄) + 𝑅) = ((𝐵 · 𝑄) + (𝐴 − (𝐵 · 𝑄)))
5741, 40pncan3d 11650 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐵 · 𝑄) + (𝐴 − (𝐵 · 𝑄))) = 𝐴)
5856, 57eqtr2id 2793 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐴 = ((𝐵 · 𝑄) + 𝑅))
5955, 58jca 511 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝑅 < 𝐵𝐴 = ((𝐵 · 𝑄) + 𝑅)))
6010, 33, 59jca31 514 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝑄 ∈ ℤ ∧ 𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵𝐴 = ((𝐵 · 𝑄) + 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cn 12293  0cn0 12553  cz 12639  cfl 13841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fl 13843
This theorem is referenced by:  quoremnn0  13907
  Copyright terms: Public domain W3C validator