MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdmultiple Structured version   Visualization version   GIF version

Theorem gcdmultiple 15470
Description: The GCD of a multiple of a number is the number itself. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
gcdmultiple ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)

Proof of Theorem gcdmultiple
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6799 . . . . . 6 (𝑘 = 1 → (𝑀 · 𝑘) = (𝑀 · 1))
21oveq2d 6807 . . . . 5 (𝑘 = 1 → (𝑀 gcd (𝑀 · 𝑘)) = (𝑀 gcd (𝑀 · 1)))
32eqeq1d 2773 . . . 4 (𝑘 = 1 → ((𝑀 gcd (𝑀 · 𝑘)) = 𝑀 ↔ (𝑀 gcd (𝑀 · 1)) = 𝑀))
43imbi2d 329 . . 3 (𝑘 = 1 → ((𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑘)) = 𝑀) ↔ (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 1)) = 𝑀)))
5 oveq2 6799 . . . . . 6 (𝑘 = 𝑛 → (𝑀 · 𝑘) = (𝑀 · 𝑛))
65oveq2d 6807 . . . . 5 (𝑘 = 𝑛 → (𝑀 gcd (𝑀 · 𝑘)) = (𝑀 gcd (𝑀 · 𝑛)))
76eqeq1d 2773 . . . 4 (𝑘 = 𝑛 → ((𝑀 gcd (𝑀 · 𝑘)) = 𝑀 ↔ (𝑀 gcd (𝑀 · 𝑛)) = 𝑀))
87imbi2d 329 . . 3 (𝑘 = 𝑛 → ((𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑘)) = 𝑀) ↔ (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑛)) = 𝑀)))
9 oveq2 6799 . . . . . 6 (𝑘 = (𝑛 + 1) → (𝑀 · 𝑘) = (𝑀 · (𝑛 + 1)))
109oveq2d 6807 . . . . 5 (𝑘 = (𝑛 + 1) → (𝑀 gcd (𝑀 · 𝑘)) = (𝑀 gcd (𝑀 · (𝑛 + 1))))
1110eqeq1d 2773 . . . 4 (𝑘 = (𝑛 + 1) → ((𝑀 gcd (𝑀 · 𝑘)) = 𝑀 ↔ (𝑀 gcd (𝑀 · (𝑛 + 1))) = 𝑀))
1211imbi2d 329 . . 3 (𝑘 = (𝑛 + 1) → ((𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑘)) = 𝑀) ↔ (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · (𝑛 + 1))) = 𝑀)))
13 oveq2 6799 . . . . . 6 (𝑘 = 𝑁 → (𝑀 · 𝑘) = (𝑀 · 𝑁))
1413oveq2d 6807 . . . . 5 (𝑘 = 𝑁 → (𝑀 gcd (𝑀 · 𝑘)) = (𝑀 gcd (𝑀 · 𝑁)))
1514eqeq1d 2773 . . . 4 (𝑘 = 𝑁 → ((𝑀 gcd (𝑀 · 𝑘)) = 𝑀 ↔ (𝑀 gcd (𝑀 · 𝑁)) = 𝑀))
1615imbi2d 329 . . 3 (𝑘 = 𝑁 → ((𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑘)) = 𝑀) ↔ (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)))
17 nncn 11228 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
1817mulid1d 10257 . . . . 5 (𝑀 ∈ ℕ → (𝑀 · 1) = 𝑀)
1918oveq2d 6807 . . . 4 (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 1)) = (𝑀 gcd 𝑀))
20 nnz 11599 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
21 gcdid 15449 . . . . . 6 (𝑀 ∈ ℤ → (𝑀 gcd 𝑀) = (abs‘𝑀))
2220, 21syl 17 . . . . 5 (𝑀 ∈ ℕ → (𝑀 gcd 𝑀) = (abs‘𝑀))
23 nnre 11227 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
24 nnnn0 11499 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
2524nn0ge0d 11554 . . . . . 6 (𝑀 ∈ ℕ → 0 ≤ 𝑀)
2623, 25absidd 14362 . . . . 5 (𝑀 ∈ ℕ → (abs‘𝑀) = 𝑀)
2722, 26eqtrd 2805 . . . 4 (𝑀 ∈ ℕ → (𝑀 gcd 𝑀) = 𝑀)
2819, 27eqtrd 2805 . . 3 (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 1)) = 𝑀)
2920adantr 466 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑀 ∈ ℤ)
30 nnz 11599 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
31 zmulcl 11626 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑀 · 𝑛) ∈ ℤ)
3220, 30, 31syl2an 583 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑀 · 𝑛) ∈ ℤ)
33 1z 11607 . . . . . . . . . 10 1 ∈ ℤ
34 gcdaddm 15447 . . . . . . . . . 10 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 · 𝑛) ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑛)) = (𝑀 gcd ((𝑀 · 𝑛) + (1 · 𝑀))))
3533, 34mp3an1 1559 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ (𝑀 · 𝑛) ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑛)) = (𝑀 gcd ((𝑀 · 𝑛) + (1 · 𝑀))))
3629, 32, 35syl2anc 573 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑀 gcd (𝑀 · 𝑛)) = (𝑀 gcd ((𝑀 · 𝑛) + (1 · 𝑀))))
37 nncn 11228 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
38 ax-1cn 10194 . . . . . . . . . . . 12 1 ∈ ℂ
39 adddi 10225 . . . . . . . . . . . 12 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑀 · (𝑛 + 1)) = ((𝑀 · 𝑛) + (𝑀 · 1)))
4038, 39mp3an3 1561 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝑀 · (𝑛 + 1)) = ((𝑀 · 𝑛) + (𝑀 · 1)))
41 mulcom 10222 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑀 · 1) = (1 · 𝑀))
4238, 41mpan2 671 . . . . . . . . . . . . 13 (𝑀 ∈ ℂ → (𝑀 · 1) = (1 · 𝑀))
4342adantr 466 . . . . . . . . . . . 12 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝑀 · 1) = (1 · 𝑀))
4443oveq2d 6807 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝑀 · 𝑛) + (𝑀 · 1)) = ((𝑀 · 𝑛) + (1 · 𝑀)))
4540, 44eqtrd 2805 . . . . . . . . . 10 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝑀 · (𝑛 + 1)) = ((𝑀 · 𝑛) + (1 · 𝑀)))
4617, 37, 45syl2an 583 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑀 · (𝑛 + 1)) = ((𝑀 · 𝑛) + (1 · 𝑀)))
4746oveq2d 6807 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑀 gcd (𝑀 · (𝑛 + 1))) = (𝑀 gcd ((𝑀 · 𝑛) + (1 · 𝑀))))
4836, 47eqtr4d 2808 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑀 gcd (𝑀 · 𝑛)) = (𝑀 gcd (𝑀 · (𝑛 + 1))))
4948eqeq1d 2773 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → ((𝑀 gcd (𝑀 · 𝑛)) = 𝑀 ↔ (𝑀 gcd (𝑀 · (𝑛 + 1))) = 𝑀))
5049biimpd 219 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → ((𝑀 gcd (𝑀 · 𝑛)) = 𝑀 → (𝑀 gcd (𝑀 · (𝑛 + 1))) = 𝑀))
5150expcom 398 . . . 4 (𝑛 ∈ ℕ → (𝑀 ∈ ℕ → ((𝑀 gcd (𝑀 · 𝑛)) = 𝑀 → (𝑀 gcd (𝑀 · (𝑛 + 1))) = 𝑀)))
5251a2d 29 . . 3 (𝑛 ∈ ℕ → ((𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑛)) = 𝑀) → (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · (𝑛 + 1))) = 𝑀)))
534, 8, 12, 16, 28, 52nnind 11238 . 2 (𝑁 ∈ ℕ → (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀))
5453impcom 394 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  cfv 6029  (class class class)co 6791  cc 10134  1c1 10137   + caddc 10139   · cmul 10141  cn 11220  cz 11577  abscabs 14175   gcd cgcd 15417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213  ax-pre-sup 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-om 7211  df-2nd 7314  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-er 7894  df-en 8108  df-dom 8109  df-sdom 8110  df-sup 8502  df-inf 8503  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-div 10885  df-nn 11221  df-2 11279  df-3 11280  df-n0 11493  df-z 11578  df-uz 11887  df-rp 12029  df-seq 13002  df-exp 13061  df-cj 14040  df-re 14041  df-im 14042  df-sqrt 14176  df-abs 14177  df-dvds 15183  df-gcd 15418
This theorem is referenced by:  gcdmultiplez  15471  rpmulgcd  15476
  Copyright terms: Public domain W3C validator