MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpmulgcd Structured version   Visualization version   GIF version

Theorem rpmulgcd 15899
Description: If 𝐾 and 𝑀 are relatively prime, then the GCD of 𝐾 and 𝑀 · 𝑁 is the GCD of 𝐾 and 𝑁. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
rpmulgcd (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = (𝐾 gcd 𝑁))

Proof of Theorem rpmulgcd
StepHypRef Expression
1 gcdmultiple 15877 . . . . . 6 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐾 gcd (𝐾 · 𝑁)) = 𝐾)
213adant2 1128 . . . . 5 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐾 gcd (𝐾 · 𝑁)) = 𝐾)
32oveq1d 7154 . . . 4 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐾 gcd (𝐾 · 𝑁)) gcd (𝑀 · 𝑁)) = (𝐾 gcd (𝑀 · 𝑁)))
4 nnz 11996 . . . . . 6 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
543ad2ant1 1130 . . . . 5 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ ℤ)
6 nnz 11996 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
7 zmulcl 12023 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑁) ∈ ℤ)
84, 6, 7syl2an 598 . . . . . 6 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐾 · 𝑁) ∈ ℤ)
983adant2 1128 . . . . 5 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐾 · 𝑁) ∈ ℤ)
10 nnz 11996 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
11 zmulcl 12023 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ)
1210, 6, 11syl2an 598 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 · 𝑁) ∈ ℤ)
13123adant1 1127 . . . . 5 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 · 𝑁) ∈ ℤ)
14 gcdass 15888 . . . . 5 ((𝐾 ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → ((𝐾 gcd (𝐾 · 𝑁)) gcd (𝑀 · 𝑁)) = (𝐾 gcd ((𝐾 · 𝑁) gcd (𝑀 · 𝑁))))
155, 9, 13, 14syl3anc 1368 . . . 4 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐾 gcd (𝐾 · 𝑁)) gcd (𝑀 · 𝑁)) = (𝐾 gcd ((𝐾 · 𝑁) gcd (𝑀 · 𝑁))))
163, 15eqtr3d 2838 . . 3 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐾 gcd (𝑀 · 𝑁)) = (𝐾 gcd ((𝐾 · 𝑁) gcd (𝑀 · 𝑁))))
1716adantr 484 . 2 (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = (𝐾 gcd ((𝐾 · 𝑁) gcd (𝑀 · 𝑁))))
18 nnnn0 11896 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
19 mulgcdr 15891 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐾 · 𝑁) gcd (𝑀 · 𝑁)) = ((𝐾 gcd 𝑀) · 𝑁))
204, 10, 18, 19syl3an 1157 . . . . 5 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐾 · 𝑁) gcd (𝑀 · 𝑁)) = ((𝐾 gcd 𝑀) · 𝑁))
21 oveq1 7146 . . . . 5 ((𝐾 gcd 𝑀) = 1 → ((𝐾 gcd 𝑀) · 𝑁) = (1 · 𝑁))
2220, 21sylan9eq 2856 . . . 4 (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → ((𝐾 · 𝑁) gcd (𝑀 · 𝑁)) = (1 · 𝑁))
23 nncn 11637 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
24233ad2ant3 1132 . . . . . 6 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
2524adantr 484 . . . . 5 (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → 𝑁 ∈ ℂ)
2625mulid2d 10652 . . . 4 (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → (1 · 𝑁) = 𝑁)
2722, 26eqtrd 2836 . . 3 (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → ((𝐾 · 𝑁) gcd (𝑀 · 𝑁)) = 𝑁)
2827oveq2d 7155 . 2 (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → (𝐾 gcd ((𝐾 · 𝑁) gcd (𝑀 · 𝑁))) = (𝐾 gcd 𝑁))
2917, 28eqtrd 2836 1 (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = (𝐾 gcd 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2112  (class class class)co 7139  cc 10528  1c1 10531   · cmul 10535  cn 11629  0cn0 11889  cz 11973   gcd cgcd 15836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-dvds 15603  df-gcd 15837
This theorem is referenced by:  rplpwr  15900  coprmprod  15998  lgsquad2lem2  25972
  Copyright terms: Public domain W3C validator