![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ellogrn | Structured version Visualization version GIF version |
Description: Write out the property π΄ β ran log explicitly. (Contributed by Mario Carneiro, 1-Apr-2015.) |
Ref | Expression |
---|---|
ellogrn | β’ (π΄ β ran log β (π΄ β β β§ -Ο < (ββπ΄) β§ (ββπ΄) β€ Ο)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imf 15063 | . . . 4 β’ β:ββΆβ | |
2 | ffn 6710 | . . . 4 β’ (β:ββΆβ β β Fn β) | |
3 | elpreima 7052 | . . . 4 β’ (β Fn β β (π΄ β (β‘β β (-Ο(,]Ο)) β (π΄ β β β§ (ββπ΄) β (-Ο(,]Ο)))) | |
4 | 1, 2, 3 | mp2b 10 | . . 3 β’ (π΄ β (β‘β β (-Ο(,]Ο)) β (π΄ β β β§ (ββπ΄) β (-Ο(,]Ο))) |
5 | pire 26343 | . . . . . . . . 9 β’ Ο β β | |
6 | 5 | renegcli 11522 | . . . . . . . 8 β’ -Ο β β |
7 | 6 | rexri 11273 | . . . . . . 7 β’ -Ο β β* |
8 | elioc2 13390 | . . . . . . 7 β’ ((-Ο β β* β§ Ο β β) β ((ββπ΄) β (-Ο(,]Ο) β ((ββπ΄) β β β§ -Ο < (ββπ΄) β§ (ββπ΄) β€ Ο))) | |
9 | 7, 5, 8 | mp2an 689 | . . . . . 6 β’ ((ββπ΄) β (-Ο(,]Ο) β ((ββπ΄) β β β§ -Ο < (ββπ΄) β§ (ββπ΄) β€ Ο)) |
10 | 3anass 1092 | . . . . . 6 β’ (((ββπ΄) β β β§ -Ο < (ββπ΄) β§ (ββπ΄) β€ Ο) β ((ββπ΄) β β β§ (-Ο < (ββπ΄) β§ (ββπ΄) β€ Ο))) | |
11 | 9, 10 | bitri 275 | . . . . 5 β’ ((ββπ΄) β (-Ο(,]Ο) β ((ββπ΄) β β β§ (-Ο < (ββπ΄) β§ (ββπ΄) β€ Ο))) |
12 | imcl 15061 | . . . . . 6 β’ (π΄ β β β (ββπ΄) β β) | |
13 | 12 | biantrurd 532 | . . . . 5 β’ (π΄ β β β ((-Ο < (ββπ΄) β§ (ββπ΄) β€ Ο) β ((ββπ΄) β β β§ (-Ο < (ββπ΄) β§ (ββπ΄) β€ Ο)))) |
14 | 11, 13 | bitr4id 290 | . . . 4 β’ (π΄ β β β ((ββπ΄) β (-Ο(,]Ο) β (-Ο < (ββπ΄) β§ (ββπ΄) β€ Ο))) |
15 | 14 | pm5.32i 574 | . . 3 β’ ((π΄ β β β§ (ββπ΄) β (-Ο(,]Ο)) β (π΄ β β β§ (-Ο < (ββπ΄) β§ (ββπ΄) β€ Ο))) |
16 | 4, 15 | bitri 275 | . 2 β’ (π΄ β (β‘β β (-Ο(,]Ο)) β (π΄ β β β§ (-Ο < (ββπ΄) β§ (ββπ΄) β€ Ο))) |
17 | logrn 26442 | . . 3 β’ ran log = (β‘β β (-Ο(,]Ο)) | |
18 | 17 | eleq2i 2819 | . 2 β’ (π΄ β ran log β π΄ β (β‘β β (-Ο(,]Ο))) |
19 | 3anass 1092 | . 2 β’ ((π΄ β β β§ -Ο < (ββπ΄) β§ (ββπ΄) β€ Ο) β (π΄ β β β§ (-Ο < (ββπ΄) β§ (ββπ΄) β€ Ο))) | |
20 | 16, 18, 19 | 3bitr4i 303 | 1 β’ (π΄ β ran log β (π΄ β β β§ -Ο < (ββπ΄) β§ (ββπ΄) β€ Ο)) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 395 β§ w3a 1084 β wcel 2098 class class class wbr 5141 β‘ccnv 5668 ran crn 5670 β cima 5672 Fn wfn 6531 βΆwf 6532 βcfv 6536 (class class class)co 7404 βcc 11107 βcr 11108 β*cxr 11248 < clt 11249 β€ cle 11250 -cneg 11446 (,]cioc 13328 βcim 15048 Οcpi 16013 logclog 26438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-inf2 9635 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-addf 11188 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8144 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-2o 8465 df-er 8702 df-map 8821 df-pm 8822 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-fi 9405 df-sup 9436 df-inf 9437 df-oi 9504 df-card 9933 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-z 12560 df-dec 12679 df-uz 12824 df-q 12934 df-rp 12978 df-xneg 13095 df-xadd 13096 df-xmul 13097 df-ioo 13331 df-ioc 13332 df-ico 13333 df-icc 13334 df-fz 13488 df-fzo 13631 df-fl 13760 df-mod 13838 df-seq 13970 df-exp 14030 df-fac 14236 df-bc 14265 df-hash 14293 df-shft 15017 df-cj 15049 df-re 15050 df-im 15051 df-sqrt 15185 df-abs 15186 df-limsup 15418 df-clim 15435 df-rlim 15436 df-sum 15636 df-ef 16014 df-sin 16016 df-cos 16017 df-pi 16019 df-struct 17086 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-mulr 17217 df-starv 17218 df-sca 17219 df-vsca 17220 df-ip 17221 df-tset 17222 df-ple 17223 df-ds 17225 df-unif 17226 df-hom 17227 df-cco 17228 df-rest 17374 df-topn 17375 df-0g 17393 df-gsum 17394 df-topgen 17395 df-pt 17396 df-prds 17399 df-xrs 17454 df-qtop 17459 df-imas 17460 df-xps 17462 df-mre 17536 df-mrc 17537 df-acs 17539 df-mgm 18570 df-sgrp 18649 df-mnd 18665 df-submnd 18711 df-mulg 18993 df-cntz 19230 df-cmn 19699 df-psmet 21227 df-xmet 21228 df-met 21229 df-bl 21230 df-mopn 21231 df-fbas 21232 df-fg 21233 df-cnfld 21236 df-top 22746 df-topon 22763 df-topsp 22785 df-bases 22799 df-cld 22873 df-ntr 22874 df-cls 22875 df-nei 22952 df-lp 22990 df-perf 22991 df-cn 23081 df-cnp 23082 df-haus 23169 df-tx 23416 df-hmeo 23609 df-fil 23700 df-fm 23792 df-flim 23793 df-flf 23794 df-xms 24176 df-ms 24177 df-tms 24178 df-cncf 24748 df-limc 25745 df-dv 25746 df-log 26440 |
This theorem is referenced by: relogrn 26445 logrncn 26446 logimcl 26453 logrnaddcl 26458 logi 26471 logneg 26472 logcj 26490 logimul 26498 logneg2 26499 logcnlem4 26529 logf1o2 26534 logreclem 26644 asinsin 26774 asin1 26776 atanlogaddlem 26795 atanlogsub 26798 atantan 26805 |
Copyright terms: Public domain | W3C validator |