Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ipval2lem4 | Structured version Visualization version GIF version |
Description: Lemma for ipval3 29050. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dipfval.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
dipfval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
dipfval.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
dipfval.6 | ⊢ 𝑁 = (normCV‘𝑈) |
dipfval.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
Ref | Expression |
---|---|
ipval2lem4 | ⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐶 ∈ ℂ) → ((𝑁‘(𝐴𝐺(𝐶𝑆𝐵)))↑2) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dipfval.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | dipfval.2 | . . 3 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
3 | dipfval.4 | . . 3 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
4 | dipfval.6 | . . 3 ⊢ 𝑁 = (normCV‘𝑈) | |
5 | dipfval.7 | . . 3 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
6 | 1, 2, 3, 4, 5 | ipval2lem2 29045 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐶 ∈ ℂ) → ((𝑁‘(𝐴𝐺(𝐶𝑆𝐵)))↑2) ∈ ℝ) |
7 | 6 | recnd 10987 | 1 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐶 ∈ ℂ) → ((𝑁‘(𝐴𝐺(𝐶𝑆𝐵)))↑2) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ‘cfv 6430 (class class class)co 7268 ℂcc 10853 2c2 12011 ↑cexp 13763 NrmCVeccnv 28925 +𝑣 cpv 28926 BaseSetcba 28927 ·𝑠OLD cns 28928 normCVcnmcv 28931 ·𝑖OLDcdip 29041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-n0 12217 df-z 12303 df-uz 12565 df-seq 13703 df-exp 13764 df-grpo 28834 df-ablo 28886 df-vc 28900 df-nv 28933 df-va 28936 df-ba 28937 df-sm 28938 df-0v 28939 df-nmcv 28941 |
This theorem is referenced by: ipval2 29048 ipidsq 29051 dipcl 29053 dipcj 29055 dip0r 29058 |
Copyright terms: Public domain | W3C validator |