Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itsclc0lem2 Structured version   Visualization version   GIF version

Theorem itsclc0lem2 43319
 Description: Lemma 2 for itsclc0 43323. (Contributed by AV, 6-Feb-2023.)
Hypotheses
Ref Expression
itsclc0lem1.q 𝑄 = ((𝐴↑2) + (𝐵↑2))
itsclc0lem1.t 𝑇 = -(2 · (𝐵 · 𝐶))
itsclc0lem1.u 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))
itsclc0lem2.d 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
Assertion
Ref Expression
itsclc0lem2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑇↑2) − (4 · (𝑄 · 𝑈))) = ((4 · (𝐴↑2)) · 𝐷))

Proof of Theorem itsclc0lem2
StepHypRef Expression
1 itsclc0lem1.t . . . . 5 𝑇 = -(2 · (𝐵 · 𝐶))
21oveq1i 6920 . . . 4 (𝑇↑2) = (-(2 · (𝐵 · 𝐶))↑2)
3 2cnd 11436 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 2 ∈ ℂ)
4 simpl2 1248 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝐵 ∈ ℂ)
5 simpl3 1250 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝐶 ∈ ℂ)
64, 5mulcld 10384 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝐵 · 𝐶) ∈ ℂ)
73, 6mulcld 10384 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (2 · (𝐵 · 𝐶)) ∈ ℂ)
8 sqneg 13224 . . . . . 6 ((2 · (𝐵 · 𝐶)) ∈ ℂ → (-(2 · (𝐵 · 𝐶))↑2) = ((2 · (𝐵 · 𝐶))↑2))
97, 8syl 17 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (-(2 · (𝐵 · 𝐶))↑2) = ((2 · (𝐵 · 𝐶))↑2))
103, 6sqmuld 13321 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((2 · (𝐵 · 𝐶))↑2) = ((2↑2) · ((𝐵 · 𝐶)↑2)))
11 sq2 13261 . . . . . . 7 (2↑2) = 4
1211a1i 11 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (2↑2) = 4)
134, 5sqmuld 13321 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐵 · 𝐶)↑2) = ((𝐵↑2) · (𝐶↑2)))
1412, 13oveq12d 6928 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((2↑2) · ((𝐵 · 𝐶)↑2)) = (4 · ((𝐵↑2) · (𝐶↑2))))
159, 10, 143eqtrd 2865 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (-(2 · (𝐵 · 𝐶))↑2) = (4 · ((𝐵↑2) · (𝐶↑2))))
162, 15syl5eq 2873 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝑇↑2) = (4 · ((𝐵↑2) · (𝐶↑2))))
17 itsclc0lem1.q . . . . . 6 𝑄 = ((𝐴↑2) + (𝐵↑2))
18 itsclc0lem1.u . . . . . 6 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))
1917, 18oveq12i 6922 . . . . 5 (𝑄 · 𝑈) = (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))))
20 simpl1 1246 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝐴 ∈ ℂ)
2120sqcld 13307 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝐴↑2) ∈ ℂ)
224sqcld 13307 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝐵↑2) ∈ ℂ)
2321, 22addcld 10383 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) + (𝐵↑2)) ∈ ℂ)
245sqcld 13307 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝐶↑2) ∈ ℂ)
25 simpr 479 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝑅 ∈ ℂ)
2625sqcld 13307 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝑅↑2) ∈ ℂ)
2721, 26mulcld 10384 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · (𝑅↑2)) ∈ ℂ)
2823, 24, 27subdid 10817 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))) = ((((𝐴↑2) + (𝐵↑2)) · (𝐶↑2)) − (((𝐴↑2) + (𝐵↑2)) · ((𝐴↑2) · (𝑅↑2)))))
2921, 22, 24adddird 10389 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) + (𝐵↑2)) · (𝐶↑2)) = (((𝐴↑2) · (𝐶↑2)) + ((𝐵↑2) · (𝐶↑2))))
3021, 22, 27adddird 10389 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) + (𝐵↑2)) · ((𝐴↑2) · (𝑅↑2))) = (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐵↑2) · ((𝐴↑2) · (𝑅↑2)))))
3129, 30oveq12d 6928 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐴↑2) + (𝐵↑2)) · (𝐶↑2)) − (((𝐴↑2) + (𝐵↑2)) · ((𝐴↑2) · (𝑅↑2)))) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐵↑2) · (𝐶↑2))) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐵↑2) · ((𝐴↑2) · (𝑅↑2))))))
3222, 24mulcld 10384 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐵↑2) · (𝐶↑2)) ∈ ℂ)
3321, 24mulcld 10384 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · (𝐶↑2)) ∈ ℂ)
3421, 27mulcld 10384 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) ∈ ℂ)
3522, 26mulcld 10384 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐵↑2) · (𝑅↑2)) ∈ ℂ)
3621, 35mulcld 10384 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))) ∈ ℂ)
3734, 36addcld 10383 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) ∈ ℂ)
3833, 32addcomd 10564 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) · (𝐶↑2)) + ((𝐵↑2) · (𝐶↑2))) = (((𝐵↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐶↑2))))
3922, 21, 26mul12d 10571 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐵↑2) · ((𝐴↑2) · (𝑅↑2))) = ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))))
4039oveq2d 6926 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐵↑2) · ((𝐴↑2) · (𝑅↑2)))) = (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))
4138, 40oveq12d 6928 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐴↑2) · (𝐶↑2)) + ((𝐵↑2) · (𝐶↑2))) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐵↑2) · ((𝐴↑2) · (𝑅↑2))))) = ((((𝐵↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐶↑2))) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))))))
4232, 33, 37, 41assraddsubd 10775 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐴↑2) · (𝐶↑2)) + ((𝐵↑2) · (𝐶↑2))) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐵↑2) · ((𝐴↑2) · (𝑅↑2))))) = (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))
4328, 31, 423eqtrd 2865 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))) = (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))
4419, 43syl5eq 2873 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝑄 · 𝑈) = (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))
4544oveq2d 6926 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (4 · (𝑄 · 𝑈)) = (4 · (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))))))))
4616, 45oveq12d 6928 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑇↑2) − (4 · (𝑄 · 𝑈))) = ((4 · ((𝐵↑2) · (𝐶↑2))) − (4 · (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))))
47 4cn 11444 . . . . 5 4 ∈ ℂ
4847a1i 11 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 4 ∈ ℂ)
49 simp1 1170 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ ℂ)
5049sqcld 13307 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴↑2) ∈ ℂ)
5150adantr 474 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝐴↑2) ∈ ℂ)
52 itsclc0lem2.d . . . . 5 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
5317, 23syl5eqel 2910 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝑄 ∈ ℂ)
5426, 53mulcld 10384 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑅↑2) · 𝑄) ∈ ℂ)
5554, 24subcld 10720 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝑅↑2) · 𝑄) − (𝐶↑2)) ∈ ℂ)
5652, 55syl5eqel 2910 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝐷 ∈ ℂ)
5748, 51, 56mulassd 10387 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((4 · (𝐴↑2)) · 𝐷) = (4 · ((𝐴↑2) · 𝐷)))
5833, 37subcld 10720 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))))) ∈ ℂ)
5932, 32, 58subsub4d 10751 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐵↑2) · (𝐶↑2)) − ((𝐵↑2) · (𝐶↑2))) − (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))) = (((𝐵↑2) · (𝐶↑2)) − (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))))))))
6032subidd 10708 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐵↑2) · (𝐶↑2)) − ((𝐵↑2) · (𝐶↑2))) = 0)
6160oveq1d 6925 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐵↑2) · (𝐶↑2)) − ((𝐵↑2) · (𝐶↑2))) − (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))) = (0 − (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))
62 0cnd 10356 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 0 ∈ ℂ)
6362, 33, 37subsub2d 10749 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (0 − (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))) = (0 + ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2)))))
6437, 33subcld 10720 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2))) ∈ ℂ)
6564addid2d 10563 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (0 + ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2)))) = ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2))))
6661, 63, 653eqtrd 2865 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐵↑2) · (𝐶↑2)) − ((𝐵↑2) · (𝐶↑2))) − (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))) = ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2))))
6759, 66eqtr3d 2863 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐵↑2) · (𝐶↑2)) − (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))))))) = ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2))))
6821, 27, 35adddid 10388 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · (((𝐴↑2) · (𝑅↑2)) + ((𝐵↑2) · (𝑅↑2)))) = (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))
6921, 22, 26adddird 10389 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) = (((𝐴↑2) · (𝑅↑2)) + ((𝐵↑2) · (𝑅↑2))))
7069eqcomd 2831 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) · (𝑅↑2)) + ((𝐵↑2) · (𝑅↑2))) = (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)))
7170oveq2d 6926 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · (((𝐴↑2) · (𝑅↑2)) + ((𝐵↑2) · (𝑅↑2)))) = ((𝐴↑2) · (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2))))
7268, 71eqtr3d 2863 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) = ((𝐴↑2) · (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2))))
7372oveq1d 6925 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2))) = (((𝐴↑2) · (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2))) − ((𝐴↑2) · (𝐶↑2))))
7423, 26mulcld 10384 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) ∈ ℂ)
7521, 74, 24subdid 10817 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · ((((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) − (𝐶↑2))) = (((𝐴↑2) · (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2))) − ((𝐴↑2) · (𝐶↑2))))
7673, 75eqtr4d 2864 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2))) = ((𝐴↑2) · ((((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) − (𝐶↑2))))
7717a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝑄 = ((𝐴↑2) + (𝐵↑2)))
7877oveq2d 6926 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑅↑2) · 𝑄) = ((𝑅↑2) · ((𝐴↑2) + (𝐵↑2))))
7926, 23mulcomd 10385 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑅↑2) · ((𝐴↑2) + (𝐵↑2))) = (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)))
8078, 79eqtrd 2861 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑅↑2) · 𝑄) = (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)))
8180oveq1d 6925 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝑅↑2) · 𝑄) − (𝐶↑2)) = ((((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) − (𝐶↑2)))
8252, 81syl5eq 2873 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝐷 = ((((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) − (𝐶↑2)))
8382eqcomd 2831 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) − (𝐶↑2)) = 𝐷)
8483oveq2d 6926 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · ((((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) − (𝐶↑2))) = ((𝐴↑2) · 𝐷))
8567, 76, 843eqtrd 2865 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐵↑2) · (𝐶↑2)) − (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))))))) = ((𝐴↑2) · 𝐷))
8685oveq2d 6926 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (4 · (((𝐵↑2) · (𝐶↑2)) − (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))) = (4 · ((𝐴↑2) · 𝐷)))
8732, 58addcld 10383 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))) ∈ ℂ)
8848, 32, 87subdid 10817 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (4 · (((𝐵↑2) · (𝐶↑2)) − (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))) = ((4 · ((𝐵↑2) · (𝐶↑2))) − (4 · (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))))
8957, 86, 883eqtr2rd 2868 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((4 · ((𝐵↑2) · (𝐶↑2))) − (4 · (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))) = ((4 · (𝐴↑2)) · 𝐷))
9046, 89eqtrd 2861 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑇↑2) − (4 · (𝑄 · 𝑈))) = ((4 · (𝐴↑2)) · 𝐷))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   ∧ w3a 1111   = wceq 1656   ∈ wcel 2164  (class class class)co 6910  ℂcc 10257  0cc0 10259   + caddc 10262   · cmul 10264   − cmin 10592  -cneg 10593  2c2 11413  4c4 11415  ↑cexp 13161 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-n0 11626  df-z 11712  df-uz 11976  df-seq 13103  df-exp 13162 This theorem is referenced by:  itsclc0lem3  43320
 Copyright terms: Public domain W3C validator