Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itsclc0yqsollem1 Structured version   Visualization version   GIF version

Theorem itsclc0yqsollem1 46526
Description: Lemma 1 for itsclc0yqsol 46528. (Contributed by AV, 6-Feb-2023.)
Hypotheses
Ref Expression
itscnhlc0yqe.q 𝑄 = ((𝐴↑2) + (𝐵↑2))
itscnhlc0yqe.t 𝑇 = -(2 · (𝐵 · 𝐶))
itscnhlc0yqe.u 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))
itsclc0yqsollem1.d 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
Assertion
Ref Expression
itsclc0yqsollem1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑇↑2) − (4 · (𝑄 · 𝑈))) = ((4 · (𝐴↑2)) · 𝐷))

Proof of Theorem itsclc0yqsollem1
StepHypRef Expression
1 itscnhlc0yqe.t . . . . 5 𝑇 = -(2 · (𝐵 · 𝐶))
21oveq1i 7351 . . . 4 (𝑇↑2) = (-(2 · (𝐵 · 𝐶))↑2)
3 2cnd 12156 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 2 ∈ ℂ)
4 simpl2 1192 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝐵 ∈ ℂ)
5 simpl3 1193 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝐶 ∈ ℂ)
64, 5mulcld 11100 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝐵 · 𝐶) ∈ ℂ)
73, 6mulcld 11100 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (2 · (𝐵 · 𝐶)) ∈ ℂ)
8 sqneg 13941 . . . . . 6 ((2 · (𝐵 · 𝐶)) ∈ ℂ → (-(2 · (𝐵 · 𝐶))↑2) = ((2 · (𝐵 · 𝐶))↑2))
97, 8syl 17 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (-(2 · (𝐵 · 𝐶))↑2) = ((2 · (𝐵 · 𝐶))↑2))
103, 6sqmuld 13981 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((2 · (𝐵 · 𝐶))↑2) = ((2↑2) · ((𝐵 · 𝐶)↑2)))
11 sq2 14019 . . . . . . 7 (2↑2) = 4
1211a1i 11 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (2↑2) = 4)
134, 5sqmuld 13981 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐵 · 𝐶)↑2) = ((𝐵↑2) · (𝐶↑2)))
1412, 13oveq12d 7359 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((2↑2) · ((𝐵 · 𝐶)↑2)) = (4 · ((𝐵↑2) · (𝐶↑2))))
159, 10, 143eqtrd 2781 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (-(2 · (𝐵 · 𝐶))↑2) = (4 · ((𝐵↑2) · (𝐶↑2))))
162, 15eqtrid 2789 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝑇↑2) = (4 · ((𝐵↑2) · (𝐶↑2))))
17 itscnhlc0yqe.q . . . . . 6 𝑄 = ((𝐴↑2) + (𝐵↑2))
18 itscnhlc0yqe.u . . . . . 6 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))
1917, 18oveq12i 7353 . . . . 5 (𝑄 · 𝑈) = (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))))
20 simpl1 1191 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝐴 ∈ ℂ)
2120sqcld 13967 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝐴↑2) ∈ ℂ)
224sqcld 13967 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝐵↑2) ∈ ℂ)
2321, 22addcld 11099 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) + (𝐵↑2)) ∈ ℂ)
245sqcld 13967 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝐶↑2) ∈ ℂ)
25 simpr 486 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝑅 ∈ ℂ)
2625sqcld 13967 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝑅↑2) ∈ ℂ)
2721, 26mulcld 11100 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · (𝑅↑2)) ∈ ℂ)
2823, 24, 27subdid 11536 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))) = ((((𝐴↑2) + (𝐵↑2)) · (𝐶↑2)) − (((𝐴↑2) + (𝐵↑2)) · ((𝐴↑2) · (𝑅↑2)))))
2921, 22, 24adddird 11105 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) + (𝐵↑2)) · (𝐶↑2)) = (((𝐴↑2) · (𝐶↑2)) + ((𝐵↑2) · (𝐶↑2))))
3021, 22, 27adddird 11105 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) + (𝐵↑2)) · ((𝐴↑2) · (𝑅↑2))) = (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐵↑2) · ((𝐴↑2) · (𝑅↑2)))))
3129, 30oveq12d 7359 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐴↑2) + (𝐵↑2)) · (𝐶↑2)) − (((𝐴↑2) + (𝐵↑2)) · ((𝐴↑2) · (𝑅↑2)))) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐵↑2) · (𝐶↑2))) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐵↑2) · ((𝐴↑2) · (𝑅↑2))))))
3222, 24mulcld 11100 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐵↑2) · (𝐶↑2)) ∈ ℂ)
3321, 24mulcld 11100 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · (𝐶↑2)) ∈ ℂ)
3421, 27mulcld 11100 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) ∈ ℂ)
3522, 26mulcld 11100 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐵↑2) · (𝑅↑2)) ∈ ℂ)
3621, 35mulcld 11100 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))) ∈ ℂ)
3734, 36addcld 11099 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) ∈ ℂ)
3833, 32addcomd 11282 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) · (𝐶↑2)) + ((𝐵↑2) · (𝐶↑2))) = (((𝐵↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐶↑2))))
3922, 21, 26mul12d 11289 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐵↑2) · ((𝐴↑2) · (𝑅↑2))) = ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))))
4039oveq2d 7357 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐵↑2) · ((𝐴↑2) · (𝑅↑2)))) = (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))
4138, 40oveq12d 7359 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐴↑2) · (𝐶↑2)) + ((𝐵↑2) · (𝐶↑2))) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐵↑2) · ((𝐴↑2) · (𝑅↑2))))) = ((((𝐵↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐶↑2))) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))))))
4232, 33, 37, 41assraddsubd 11494 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐴↑2) · (𝐶↑2)) + ((𝐵↑2) · (𝐶↑2))) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐵↑2) · ((𝐴↑2) · (𝑅↑2))))) = (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))
4328, 31, 423eqtrd 2781 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))) = (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))
4419, 43eqtrid 2789 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝑄 · 𝑈) = (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))
4544oveq2d 7357 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (4 · (𝑄 · 𝑈)) = (4 · (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))))))))
4616, 45oveq12d 7359 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑇↑2) − (4 · (𝑄 · 𝑈))) = ((4 · ((𝐵↑2) · (𝐶↑2))) − (4 · (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))))
47 4cn 12163 . . . . 5 4 ∈ ℂ
4847a1i 11 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 4 ∈ ℂ)
49 simp1 1136 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ ℂ)
5049sqcld 13967 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴↑2) ∈ ℂ)
5150adantr 482 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝐴↑2) ∈ ℂ)
52 itsclc0yqsollem1.d . . . . 5 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
5317, 23eqeltrid 2842 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝑄 ∈ ℂ)
5426, 53mulcld 11100 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑅↑2) · 𝑄) ∈ ℂ)
5554, 24subcld 11437 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝑅↑2) · 𝑄) − (𝐶↑2)) ∈ ℂ)
5652, 55eqeltrid 2842 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝐷 ∈ ℂ)
5748, 51, 56mulassd 11103 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((4 · (𝐴↑2)) · 𝐷) = (4 · ((𝐴↑2) · 𝐷)))
5833, 37subcld 11437 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))))) ∈ ℂ)
5932, 32, 58subsub4d 11468 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐵↑2) · (𝐶↑2)) − ((𝐵↑2) · (𝐶↑2))) − (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))) = (((𝐵↑2) · (𝐶↑2)) − (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))))))))
6032subidd 11425 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐵↑2) · (𝐶↑2)) − ((𝐵↑2) · (𝐶↑2))) = 0)
6160oveq1d 7356 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐵↑2) · (𝐶↑2)) − ((𝐵↑2) · (𝐶↑2))) − (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))) = (0 − (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))
62 0cnd 11073 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 0 ∈ ℂ)
6362, 33, 37subsub2d 11466 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (0 − (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))) = (0 + ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2)))))
6437, 33subcld 11437 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2))) ∈ ℂ)
6564addid2d 11281 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (0 + ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2)))) = ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2))))
6661, 63, 653eqtrd 2781 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐵↑2) · (𝐶↑2)) − ((𝐵↑2) · (𝐶↑2))) − (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))) = ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2))))
6759, 66eqtr3d 2779 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐵↑2) · (𝐶↑2)) − (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))))))) = ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2))))
6821, 27, 35adddid 11104 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · (((𝐴↑2) · (𝑅↑2)) + ((𝐵↑2) · (𝑅↑2)))) = (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))
6921, 22, 26adddird 11105 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) = (((𝐴↑2) · (𝑅↑2)) + ((𝐵↑2) · (𝑅↑2))))
7069eqcomd 2743 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) · (𝑅↑2)) + ((𝐵↑2) · (𝑅↑2))) = (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)))
7170oveq2d 7357 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · (((𝐴↑2) · (𝑅↑2)) + ((𝐵↑2) · (𝑅↑2)))) = ((𝐴↑2) · (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2))))
7268, 71eqtr3d 2779 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) = ((𝐴↑2) · (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2))))
7372oveq1d 7356 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2))) = (((𝐴↑2) · (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2))) − ((𝐴↑2) · (𝐶↑2))))
7423, 26mulcld 11100 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) ∈ ℂ)
7521, 74, 24subdid 11536 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · ((((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) − (𝐶↑2))) = (((𝐴↑2) · (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2))) − ((𝐴↑2) · (𝐶↑2))))
7673, 75eqtr4d 2780 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2))) = ((𝐴↑2) · ((((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) − (𝐶↑2))))
7717a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝑄 = ((𝐴↑2) + (𝐵↑2)))
7877oveq2d 7357 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑅↑2) · 𝑄) = ((𝑅↑2) · ((𝐴↑2) + (𝐵↑2))))
7926, 23mulcomd 11101 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑅↑2) · ((𝐴↑2) + (𝐵↑2))) = (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)))
8078, 79eqtrd 2777 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑅↑2) · 𝑄) = (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)))
8180oveq1d 7356 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝑅↑2) · 𝑄) − (𝐶↑2)) = ((((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) − (𝐶↑2)))
8252, 81eqtrid 2789 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝐷 = ((((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) − (𝐶↑2)))
8382eqcomd 2743 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) − (𝐶↑2)) = 𝐷)
8483oveq2d 7357 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · ((((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) − (𝐶↑2))) = ((𝐴↑2) · 𝐷))
8567, 76, 843eqtrd 2781 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐵↑2) · (𝐶↑2)) − (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))))))) = ((𝐴↑2) · 𝐷))
8685oveq2d 7357 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (4 · (((𝐵↑2) · (𝐶↑2)) − (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))) = (4 · ((𝐴↑2) · 𝐷)))
8732, 58addcld 11099 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))) ∈ ℂ)
8848, 32, 87subdid 11536 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (4 · (((𝐵↑2) · (𝐶↑2)) − (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))) = ((4 · ((𝐵↑2) · (𝐶↑2))) − (4 · (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))))
8957, 86, 883eqtr2rd 2784 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((4 · ((𝐵↑2) · (𝐶↑2))) − (4 · (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))) = ((4 · (𝐴↑2)) · 𝐷))
9046, 89eqtrd 2777 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑇↑2) − (4 · (𝑄 · 𝑈))) = ((4 · (𝐴↑2)) · 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1541  wcel 2106  (class class class)co 7341  cc 10974  0cc0 10976   + caddc 10979   · cmul 10981  cmin 11310  -cneg 11311  2c2 12133  4c4 12135  cexp 13887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654  ax-cnex 11032  ax-resscn 11033  ax-1cn 11034  ax-icn 11035  ax-addcl 11036  ax-addrcl 11037  ax-mulcl 11038  ax-mulrcl 11039  ax-mulcom 11040  ax-addass 11041  ax-mulass 11042  ax-distr 11043  ax-i2m1 11044  ax-1ne0 11045  ax-1rid 11046  ax-rnegex 11047  ax-rrecex 11048  ax-cnre 11049  ax-pre-lttri 11050  ax-pre-lttrn 11051  ax-pre-ltadd 11052  ax-pre-mulgt0 11053
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-pss 3920  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-iun 4947  df-br 5097  df-opab 5159  df-mpt 5180  df-tr 5214  df-id 5522  df-eprel 5528  df-po 5536  df-so 5537  df-fr 5579  df-we 5581  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-pred 6242  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-riota 7297  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7785  df-2nd 7904  df-frecs 8171  df-wrecs 8202  df-recs 8276  df-rdg 8315  df-er 8573  df-en 8809  df-dom 8810  df-sdom 8811  df-pnf 11116  df-mnf 11117  df-xr 11118  df-ltxr 11119  df-le 11120  df-sub 11312  df-neg 11313  df-nn 12079  df-2 12141  df-3 12142  df-4 12143  df-n0 12339  df-z 12425  df-uz 12688  df-seq 13827  df-exp 13888
This theorem is referenced by:  itsclc0yqsollem2  46527
  Copyright terms: Public domain W3C validator