Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itsclc0yqsollem1 Structured version   Visualization version   GIF version

Theorem itsclc0yqsollem1 48612
Description: Lemma 1 for itsclc0yqsol 48614. (Contributed by AV, 6-Feb-2023.)
Hypotheses
Ref Expression
itscnhlc0yqe.q 𝑄 = ((𝐴↑2) + (𝐵↑2))
itscnhlc0yqe.t 𝑇 = -(2 · (𝐵 · 𝐶))
itscnhlc0yqe.u 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))
itsclc0yqsollem1.d 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
Assertion
Ref Expression
itsclc0yqsollem1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑇↑2) − (4 · (𝑄 · 𝑈))) = ((4 · (𝐴↑2)) · 𝐷))

Proof of Theorem itsclc0yqsollem1
StepHypRef Expression
1 itscnhlc0yqe.t . . . . 5 𝑇 = -(2 · (𝐵 · 𝐶))
21oveq1i 7441 . . . 4 (𝑇↑2) = (-(2 · (𝐵 · 𝐶))↑2)
3 2cnd 12342 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 2 ∈ ℂ)
4 simpl2 1191 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝐵 ∈ ℂ)
5 simpl3 1192 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝐶 ∈ ℂ)
64, 5mulcld 11279 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝐵 · 𝐶) ∈ ℂ)
73, 6mulcld 11279 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (2 · (𝐵 · 𝐶)) ∈ ℂ)
8 sqneg 14153 . . . . . 6 ((2 · (𝐵 · 𝐶)) ∈ ℂ → (-(2 · (𝐵 · 𝐶))↑2) = ((2 · (𝐵 · 𝐶))↑2))
97, 8syl 17 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (-(2 · (𝐵 · 𝐶))↑2) = ((2 · (𝐵 · 𝐶))↑2))
103, 6sqmuld 14195 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((2 · (𝐵 · 𝐶))↑2) = ((2↑2) · ((𝐵 · 𝐶)↑2)))
11 sq2 14233 . . . . . . 7 (2↑2) = 4
1211a1i 11 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (2↑2) = 4)
134, 5sqmuld 14195 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐵 · 𝐶)↑2) = ((𝐵↑2) · (𝐶↑2)))
1412, 13oveq12d 7449 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((2↑2) · ((𝐵 · 𝐶)↑2)) = (4 · ((𝐵↑2) · (𝐶↑2))))
159, 10, 143eqtrd 2779 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (-(2 · (𝐵 · 𝐶))↑2) = (4 · ((𝐵↑2) · (𝐶↑2))))
162, 15eqtrid 2787 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝑇↑2) = (4 · ((𝐵↑2) · (𝐶↑2))))
17 itscnhlc0yqe.q . . . . . 6 𝑄 = ((𝐴↑2) + (𝐵↑2))
18 itscnhlc0yqe.u . . . . . 6 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))
1917, 18oveq12i 7443 . . . . 5 (𝑄 · 𝑈) = (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))))
20 simpl1 1190 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝐴 ∈ ℂ)
2120sqcld 14181 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝐴↑2) ∈ ℂ)
224sqcld 14181 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝐵↑2) ∈ ℂ)
2321, 22addcld 11278 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) + (𝐵↑2)) ∈ ℂ)
245sqcld 14181 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝐶↑2) ∈ ℂ)
25 simpr 484 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝑅 ∈ ℂ)
2625sqcld 14181 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝑅↑2) ∈ ℂ)
2721, 26mulcld 11279 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · (𝑅↑2)) ∈ ℂ)
2823, 24, 27subdid 11717 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))) = ((((𝐴↑2) + (𝐵↑2)) · (𝐶↑2)) − (((𝐴↑2) + (𝐵↑2)) · ((𝐴↑2) · (𝑅↑2)))))
2921, 22, 24adddird 11284 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) + (𝐵↑2)) · (𝐶↑2)) = (((𝐴↑2) · (𝐶↑2)) + ((𝐵↑2) · (𝐶↑2))))
3021, 22, 27adddird 11284 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) + (𝐵↑2)) · ((𝐴↑2) · (𝑅↑2))) = (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐵↑2) · ((𝐴↑2) · (𝑅↑2)))))
3129, 30oveq12d 7449 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐴↑2) + (𝐵↑2)) · (𝐶↑2)) − (((𝐴↑2) + (𝐵↑2)) · ((𝐴↑2) · (𝑅↑2)))) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐵↑2) · (𝐶↑2))) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐵↑2) · ((𝐴↑2) · (𝑅↑2))))))
3222, 24mulcld 11279 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐵↑2) · (𝐶↑2)) ∈ ℂ)
3321, 24mulcld 11279 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · (𝐶↑2)) ∈ ℂ)
3421, 27mulcld 11279 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) ∈ ℂ)
3522, 26mulcld 11279 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐵↑2) · (𝑅↑2)) ∈ ℂ)
3621, 35mulcld 11279 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))) ∈ ℂ)
3734, 36addcld 11278 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) ∈ ℂ)
3833, 32addcomd 11461 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) · (𝐶↑2)) + ((𝐵↑2) · (𝐶↑2))) = (((𝐵↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐶↑2))))
3922, 21, 26mul12d 11468 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐵↑2) · ((𝐴↑2) · (𝑅↑2))) = ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))))
4039oveq2d 7447 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐵↑2) · ((𝐴↑2) · (𝑅↑2)))) = (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))
4138, 40oveq12d 7449 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐴↑2) · (𝐶↑2)) + ((𝐵↑2) · (𝐶↑2))) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐵↑2) · ((𝐴↑2) · (𝑅↑2))))) = ((((𝐵↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐶↑2))) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))))))
4232, 33, 37, 41assraddsubd 11675 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐴↑2) · (𝐶↑2)) + ((𝐵↑2) · (𝐶↑2))) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐵↑2) · ((𝐴↑2) · (𝑅↑2))))) = (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))
4328, 31, 423eqtrd 2779 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))) = (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))
4419, 43eqtrid 2787 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝑄 · 𝑈) = (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))
4544oveq2d 7447 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (4 · (𝑄 · 𝑈)) = (4 · (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))))))))
4616, 45oveq12d 7449 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑇↑2) − (4 · (𝑄 · 𝑈))) = ((4 · ((𝐵↑2) · (𝐶↑2))) − (4 · (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))))
47 4cn 12349 . . . . 5 4 ∈ ℂ
4847a1i 11 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 4 ∈ ℂ)
49 simp1 1135 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ ℂ)
5049sqcld 14181 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴↑2) ∈ ℂ)
5150adantr 480 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝐴↑2) ∈ ℂ)
52 itsclc0yqsollem1.d . . . . 5 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
5317, 23eqeltrid 2843 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝑄 ∈ ℂ)
5426, 53mulcld 11279 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑅↑2) · 𝑄) ∈ ℂ)
5554, 24subcld 11618 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝑅↑2) · 𝑄) − (𝐶↑2)) ∈ ℂ)
5652, 55eqeltrid 2843 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝐷 ∈ ℂ)
5748, 51, 56mulassd 11282 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((4 · (𝐴↑2)) · 𝐷) = (4 · ((𝐴↑2) · 𝐷)))
5833, 37subcld 11618 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))))) ∈ ℂ)
5932, 32, 58subsub4d 11649 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐵↑2) · (𝐶↑2)) − ((𝐵↑2) · (𝐶↑2))) − (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))) = (((𝐵↑2) · (𝐶↑2)) − (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))))))))
6032subidd 11606 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐵↑2) · (𝐶↑2)) − ((𝐵↑2) · (𝐶↑2))) = 0)
6160oveq1d 7446 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐵↑2) · (𝐶↑2)) − ((𝐵↑2) · (𝐶↑2))) − (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))) = (0 − (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))
62 0cnd 11252 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 0 ∈ ℂ)
6362, 33, 37subsub2d 11647 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (0 − (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))) = (0 + ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2)))))
6437, 33subcld 11618 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2))) ∈ ℂ)
6564addlidd 11460 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (0 + ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2)))) = ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2))))
6661, 63, 653eqtrd 2779 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐵↑2) · (𝐶↑2)) − ((𝐵↑2) · (𝐶↑2))) − (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))) = ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2))))
6759, 66eqtr3d 2777 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐵↑2) · (𝐶↑2)) − (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))))))) = ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2))))
6821, 27, 35adddid 11283 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · (((𝐴↑2) · (𝑅↑2)) + ((𝐵↑2) · (𝑅↑2)))) = (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))
6921, 22, 26adddird 11284 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) = (((𝐴↑2) · (𝑅↑2)) + ((𝐵↑2) · (𝑅↑2))))
7069eqcomd 2741 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) · (𝑅↑2)) + ((𝐵↑2) · (𝑅↑2))) = (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)))
7170oveq2d 7447 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · (((𝐴↑2) · (𝑅↑2)) + ((𝐵↑2) · (𝑅↑2)))) = ((𝐴↑2) · (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2))))
7268, 71eqtr3d 2777 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) = ((𝐴↑2) · (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2))))
7372oveq1d 7446 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2))) = (((𝐴↑2) · (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2))) − ((𝐴↑2) · (𝐶↑2))))
7423, 26mulcld 11279 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) ∈ ℂ)
7521, 74, 24subdid 11717 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · ((((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) − (𝐶↑2))) = (((𝐴↑2) · (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2))) − ((𝐴↑2) · (𝐶↑2))))
7673, 75eqtr4d 2778 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2))) = ((𝐴↑2) · ((((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) − (𝐶↑2))))
7717a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝑄 = ((𝐴↑2) + (𝐵↑2)))
7877oveq2d 7447 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑅↑2) · 𝑄) = ((𝑅↑2) · ((𝐴↑2) + (𝐵↑2))))
7926, 23mulcomd 11280 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑅↑2) · ((𝐴↑2) + (𝐵↑2))) = (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)))
8078, 79eqtrd 2775 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑅↑2) · 𝑄) = (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)))
8180oveq1d 7446 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝑅↑2) · 𝑄) − (𝐶↑2)) = ((((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) − (𝐶↑2)))
8252, 81eqtrid 2787 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝐷 = ((((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) − (𝐶↑2)))
8382eqcomd 2741 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) − (𝐶↑2)) = 𝐷)
8483oveq2d 7447 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · ((((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) − (𝐶↑2))) = ((𝐴↑2) · 𝐷))
8567, 76, 843eqtrd 2779 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐵↑2) · (𝐶↑2)) − (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))))))) = ((𝐴↑2) · 𝐷))
8685oveq2d 7447 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (4 · (((𝐵↑2) · (𝐶↑2)) − (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))) = (4 · ((𝐴↑2) · 𝐷)))
8732, 58addcld 11278 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))) ∈ ℂ)
8848, 32, 87subdid 11717 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (4 · (((𝐵↑2) · (𝐶↑2)) − (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))) = ((4 · ((𝐵↑2) · (𝐶↑2))) − (4 · (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))))
8957, 86, 883eqtr2rd 2782 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((4 · ((𝐵↑2) · (𝐶↑2))) − (4 · (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))) = ((4 · (𝐴↑2)) · 𝐷))
9046, 89eqtrd 2775 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑇↑2) − (4 · (𝑄 · 𝑈))) = ((4 · (𝐴↑2)) · 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  (class class class)co 7431  cc 11151  0cc0 11153   + caddc 11156   · cmul 11158  cmin 11490  -cneg 11491  2c2 12319  4c4 12321  cexp 14099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-n0 12525  df-z 12612  df-uz 12877  df-seq 14040  df-exp 14100
This theorem is referenced by:  itsclc0yqsollem2  48613
  Copyright terms: Public domain W3C validator