Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itsclc0yqsollem1 Structured version   Visualization version   GIF version

Theorem itsclc0yqsollem1 48767
Description: Lemma 1 for itsclc0yqsol 48769. (Contributed by AV, 6-Feb-2023.)
Hypotheses
Ref Expression
itscnhlc0yqe.q 𝑄 = ((𝐴↑2) + (𝐵↑2))
itscnhlc0yqe.t 𝑇 = -(2 · (𝐵 · 𝐶))
itscnhlc0yqe.u 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))
itsclc0yqsollem1.d 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
Assertion
Ref Expression
itsclc0yqsollem1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑇↑2) − (4 · (𝑄 · 𝑈))) = ((4 · (𝐴↑2)) · 𝐷))

Proof of Theorem itsclc0yqsollem1
StepHypRef Expression
1 itscnhlc0yqe.t . . . . 5 𝑇 = -(2 · (𝐵 · 𝐶))
21oveq1i 7359 . . . 4 (𝑇↑2) = (-(2 · (𝐵 · 𝐶))↑2)
3 2cnd 12206 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 2 ∈ ℂ)
4 simpl2 1193 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝐵 ∈ ℂ)
5 simpl3 1194 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝐶 ∈ ℂ)
64, 5mulcld 11135 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝐵 · 𝐶) ∈ ℂ)
73, 6mulcld 11135 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (2 · (𝐵 · 𝐶)) ∈ ℂ)
8 sqneg 14022 . . . . . 6 ((2 · (𝐵 · 𝐶)) ∈ ℂ → (-(2 · (𝐵 · 𝐶))↑2) = ((2 · (𝐵 · 𝐶))↑2))
97, 8syl 17 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (-(2 · (𝐵 · 𝐶))↑2) = ((2 · (𝐵 · 𝐶))↑2))
103, 6sqmuld 14065 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((2 · (𝐵 · 𝐶))↑2) = ((2↑2) · ((𝐵 · 𝐶)↑2)))
11 sq2 14104 . . . . . . 7 (2↑2) = 4
1211a1i 11 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (2↑2) = 4)
134, 5sqmuld 14065 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐵 · 𝐶)↑2) = ((𝐵↑2) · (𝐶↑2)))
1412, 13oveq12d 7367 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((2↑2) · ((𝐵 · 𝐶)↑2)) = (4 · ((𝐵↑2) · (𝐶↑2))))
159, 10, 143eqtrd 2768 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (-(2 · (𝐵 · 𝐶))↑2) = (4 · ((𝐵↑2) · (𝐶↑2))))
162, 15eqtrid 2776 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝑇↑2) = (4 · ((𝐵↑2) · (𝐶↑2))))
17 itscnhlc0yqe.q . . . . . 6 𝑄 = ((𝐴↑2) + (𝐵↑2))
18 itscnhlc0yqe.u . . . . . 6 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))
1917, 18oveq12i 7361 . . . . 5 (𝑄 · 𝑈) = (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))))
20 simpl1 1192 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝐴 ∈ ℂ)
2120sqcld 14051 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝐴↑2) ∈ ℂ)
224sqcld 14051 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝐵↑2) ∈ ℂ)
2321, 22addcld 11134 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) + (𝐵↑2)) ∈ ℂ)
245sqcld 14051 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝐶↑2) ∈ ℂ)
25 simpr 484 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝑅 ∈ ℂ)
2625sqcld 14051 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝑅↑2) ∈ ℂ)
2721, 26mulcld 11135 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · (𝑅↑2)) ∈ ℂ)
2823, 24, 27subdid 11576 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))) = ((((𝐴↑2) + (𝐵↑2)) · (𝐶↑2)) − (((𝐴↑2) + (𝐵↑2)) · ((𝐴↑2) · (𝑅↑2)))))
2921, 22, 24adddird 11140 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) + (𝐵↑2)) · (𝐶↑2)) = (((𝐴↑2) · (𝐶↑2)) + ((𝐵↑2) · (𝐶↑2))))
3021, 22, 27adddird 11140 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) + (𝐵↑2)) · ((𝐴↑2) · (𝑅↑2))) = (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐵↑2) · ((𝐴↑2) · (𝑅↑2)))))
3129, 30oveq12d 7367 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐴↑2) + (𝐵↑2)) · (𝐶↑2)) − (((𝐴↑2) + (𝐵↑2)) · ((𝐴↑2) · (𝑅↑2)))) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐵↑2) · (𝐶↑2))) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐵↑2) · ((𝐴↑2) · (𝑅↑2))))))
3222, 24mulcld 11135 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐵↑2) · (𝐶↑2)) ∈ ℂ)
3321, 24mulcld 11135 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · (𝐶↑2)) ∈ ℂ)
3421, 27mulcld 11135 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) ∈ ℂ)
3522, 26mulcld 11135 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐵↑2) · (𝑅↑2)) ∈ ℂ)
3621, 35mulcld 11135 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))) ∈ ℂ)
3734, 36addcld 11134 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) ∈ ℂ)
3833, 32addcomd 11318 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) · (𝐶↑2)) + ((𝐵↑2) · (𝐶↑2))) = (((𝐵↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐶↑2))))
3922, 21, 26mul12d 11325 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐵↑2) · ((𝐴↑2) · (𝑅↑2))) = ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))))
4039oveq2d 7365 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐵↑2) · ((𝐴↑2) · (𝑅↑2)))) = (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))
4138, 40oveq12d 7367 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐴↑2) · (𝐶↑2)) + ((𝐵↑2) · (𝐶↑2))) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐵↑2) · ((𝐴↑2) · (𝑅↑2))))) = ((((𝐵↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐶↑2))) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))))))
4232, 33, 37, 41assraddsubd 11534 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐴↑2) · (𝐶↑2)) + ((𝐵↑2) · (𝐶↑2))) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐵↑2) · ((𝐴↑2) · (𝑅↑2))))) = (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))
4328, 31, 423eqtrd 2768 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))) = (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))
4419, 43eqtrid 2776 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝑄 · 𝑈) = (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))
4544oveq2d 7365 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (4 · (𝑄 · 𝑈)) = (4 · (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))))))))
4616, 45oveq12d 7367 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑇↑2) − (4 · (𝑄 · 𝑈))) = ((4 · ((𝐵↑2) · (𝐶↑2))) − (4 · (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))))
47 4cn 12213 . . . . 5 4 ∈ ℂ
4847a1i 11 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 4 ∈ ℂ)
49 simp1 1136 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ ℂ)
5049sqcld 14051 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴↑2) ∈ ℂ)
5150adantr 480 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝐴↑2) ∈ ℂ)
52 itsclc0yqsollem1.d . . . . 5 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
5317, 23eqeltrid 2832 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝑄 ∈ ℂ)
5426, 53mulcld 11135 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑅↑2) · 𝑄) ∈ ℂ)
5554, 24subcld 11475 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝑅↑2) · 𝑄) − (𝐶↑2)) ∈ ℂ)
5652, 55eqeltrid 2832 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝐷 ∈ ℂ)
5748, 51, 56mulassd 11138 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((4 · (𝐴↑2)) · 𝐷) = (4 · ((𝐴↑2) · 𝐷)))
5833, 37subcld 11475 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))))) ∈ ℂ)
5932, 32, 58subsub4d 11506 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐵↑2) · (𝐶↑2)) − ((𝐵↑2) · (𝐶↑2))) − (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))) = (((𝐵↑2) · (𝐶↑2)) − (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))))))))
6032subidd 11463 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐵↑2) · (𝐶↑2)) − ((𝐵↑2) · (𝐶↑2))) = 0)
6160oveq1d 7364 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐵↑2) · (𝐶↑2)) − ((𝐵↑2) · (𝐶↑2))) − (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))) = (0 − (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))
62 0cnd 11108 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 0 ∈ ℂ)
6362, 33, 37subsub2d 11504 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (0 − (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))) = (0 + ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2)))))
6437, 33subcld 11475 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2))) ∈ ℂ)
6564addlidd 11317 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (0 + ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2)))) = ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2))))
6661, 63, 653eqtrd 2768 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐵↑2) · (𝐶↑2)) − ((𝐵↑2) · (𝐶↑2))) − (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))) = ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2))))
6759, 66eqtr3d 2766 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐵↑2) · (𝐶↑2)) − (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))))))) = ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2))))
6821, 27, 35adddid 11139 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · (((𝐴↑2) · (𝑅↑2)) + ((𝐵↑2) · (𝑅↑2)))) = (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))
6921, 22, 26adddird 11140 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) = (((𝐴↑2) · (𝑅↑2)) + ((𝐵↑2) · (𝑅↑2))))
7069eqcomd 2735 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) · (𝑅↑2)) + ((𝐵↑2) · (𝑅↑2))) = (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)))
7170oveq2d 7365 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · (((𝐴↑2) · (𝑅↑2)) + ((𝐵↑2) · (𝑅↑2)))) = ((𝐴↑2) · (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2))))
7268, 71eqtr3d 2766 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) = ((𝐴↑2) · (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2))))
7372oveq1d 7364 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2))) = (((𝐴↑2) · (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2))) − ((𝐴↑2) · (𝐶↑2))))
7423, 26mulcld 11135 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) ∈ ℂ)
7521, 74, 24subdid 11576 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · ((((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) − (𝐶↑2))) = (((𝐴↑2) · (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2))) − ((𝐴↑2) · (𝐶↑2))))
7673, 75eqtr4d 2767 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2))) = ((𝐴↑2) · ((((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) − (𝐶↑2))))
7717a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝑄 = ((𝐴↑2) + (𝐵↑2)))
7877oveq2d 7365 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑅↑2) · 𝑄) = ((𝑅↑2) · ((𝐴↑2) + (𝐵↑2))))
7926, 23mulcomd 11136 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑅↑2) · ((𝐴↑2) + (𝐵↑2))) = (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)))
8078, 79eqtrd 2764 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑅↑2) · 𝑄) = (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)))
8180oveq1d 7364 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝑅↑2) · 𝑄) − (𝐶↑2)) = ((((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) − (𝐶↑2)))
8252, 81eqtrid 2776 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝐷 = ((((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) − (𝐶↑2)))
8382eqcomd 2735 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) − (𝐶↑2)) = 𝐷)
8483oveq2d 7365 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · ((((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) − (𝐶↑2))) = ((𝐴↑2) · 𝐷))
8567, 76, 843eqtrd 2768 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐵↑2) · (𝐶↑2)) − (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))))))) = ((𝐴↑2) · 𝐷))
8685oveq2d 7365 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (4 · (((𝐵↑2) · (𝐶↑2)) − (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))) = (4 · ((𝐴↑2) · 𝐷)))
8732, 58addcld 11134 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))) ∈ ℂ)
8848, 32, 87subdid 11576 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (4 · (((𝐵↑2) · (𝐶↑2)) − (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))) = ((4 · ((𝐵↑2) · (𝐶↑2))) − (4 · (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))))
8957, 86, 883eqtr2rd 2771 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((4 · ((𝐵↑2) · (𝐶↑2))) − (4 · (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))) = ((4 · (𝐴↑2)) · 𝐷))
9046, 89eqtrd 2764 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑇↑2) − (4 · (𝑄 · 𝑈))) = ((4 · (𝐴↑2)) · 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  (class class class)co 7349  cc 11007  0cc0 11009   + caddc 11012   · cmul 11014  cmin 11347  -cneg 11348  2c2 12183  4c4 12185  cexp 13968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-n0 12385  df-z 12472  df-uz 12736  df-seq 13909  df-exp 13969
This theorem is referenced by:  itsclc0yqsollem2  48768
  Copyright terms: Public domain W3C validator