Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itsclc0yqsollem1 Structured version   Visualization version   GIF version

Theorem itsclc0yqsollem1 48496
Description: Lemma 1 for itsclc0yqsol 48498. (Contributed by AV, 6-Feb-2023.)
Hypotheses
Ref Expression
itscnhlc0yqe.q 𝑄 = ((𝐴↑2) + (𝐵↑2))
itscnhlc0yqe.t 𝑇 = -(2 · (𝐵 · 𝐶))
itscnhlc0yqe.u 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))
itsclc0yqsollem1.d 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
Assertion
Ref Expression
itsclc0yqsollem1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑇↑2) − (4 · (𝑄 · 𝑈))) = ((4 · (𝐴↑2)) · 𝐷))

Proof of Theorem itsclc0yqsollem1
StepHypRef Expression
1 itscnhlc0yqe.t . . . . 5 𝑇 = -(2 · (𝐵 · 𝐶))
21oveq1i 7458 . . . 4 (𝑇↑2) = (-(2 · (𝐵 · 𝐶))↑2)
3 2cnd 12371 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 2 ∈ ℂ)
4 simpl2 1192 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝐵 ∈ ℂ)
5 simpl3 1193 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝐶 ∈ ℂ)
64, 5mulcld 11310 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝐵 · 𝐶) ∈ ℂ)
73, 6mulcld 11310 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (2 · (𝐵 · 𝐶)) ∈ ℂ)
8 sqneg 14166 . . . . . 6 ((2 · (𝐵 · 𝐶)) ∈ ℂ → (-(2 · (𝐵 · 𝐶))↑2) = ((2 · (𝐵 · 𝐶))↑2))
97, 8syl 17 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (-(2 · (𝐵 · 𝐶))↑2) = ((2 · (𝐵 · 𝐶))↑2))
103, 6sqmuld 14208 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((2 · (𝐵 · 𝐶))↑2) = ((2↑2) · ((𝐵 · 𝐶)↑2)))
11 sq2 14246 . . . . . . 7 (2↑2) = 4
1211a1i 11 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (2↑2) = 4)
134, 5sqmuld 14208 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐵 · 𝐶)↑2) = ((𝐵↑2) · (𝐶↑2)))
1412, 13oveq12d 7466 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((2↑2) · ((𝐵 · 𝐶)↑2)) = (4 · ((𝐵↑2) · (𝐶↑2))))
159, 10, 143eqtrd 2784 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (-(2 · (𝐵 · 𝐶))↑2) = (4 · ((𝐵↑2) · (𝐶↑2))))
162, 15eqtrid 2792 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝑇↑2) = (4 · ((𝐵↑2) · (𝐶↑2))))
17 itscnhlc0yqe.q . . . . . 6 𝑄 = ((𝐴↑2) + (𝐵↑2))
18 itscnhlc0yqe.u . . . . . 6 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))
1917, 18oveq12i 7460 . . . . 5 (𝑄 · 𝑈) = (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))))
20 simpl1 1191 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝐴 ∈ ℂ)
2120sqcld 14194 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝐴↑2) ∈ ℂ)
224sqcld 14194 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝐵↑2) ∈ ℂ)
2321, 22addcld 11309 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) + (𝐵↑2)) ∈ ℂ)
245sqcld 14194 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝐶↑2) ∈ ℂ)
25 simpr 484 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝑅 ∈ ℂ)
2625sqcld 14194 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝑅↑2) ∈ ℂ)
2721, 26mulcld 11310 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · (𝑅↑2)) ∈ ℂ)
2823, 24, 27subdid 11746 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))) = ((((𝐴↑2) + (𝐵↑2)) · (𝐶↑2)) − (((𝐴↑2) + (𝐵↑2)) · ((𝐴↑2) · (𝑅↑2)))))
2921, 22, 24adddird 11315 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) + (𝐵↑2)) · (𝐶↑2)) = (((𝐴↑2) · (𝐶↑2)) + ((𝐵↑2) · (𝐶↑2))))
3021, 22, 27adddird 11315 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) + (𝐵↑2)) · ((𝐴↑2) · (𝑅↑2))) = (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐵↑2) · ((𝐴↑2) · (𝑅↑2)))))
3129, 30oveq12d 7466 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐴↑2) + (𝐵↑2)) · (𝐶↑2)) − (((𝐴↑2) + (𝐵↑2)) · ((𝐴↑2) · (𝑅↑2)))) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐵↑2) · (𝐶↑2))) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐵↑2) · ((𝐴↑2) · (𝑅↑2))))))
3222, 24mulcld 11310 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐵↑2) · (𝐶↑2)) ∈ ℂ)
3321, 24mulcld 11310 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · (𝐶↑2)) ∈ ℂ)
3421, 27mulcld 11310 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) ∈ ℂ)
3522, 26mulcld 11310 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐵↑2) · (𝑅↑2)) ∈ ℂ)
3621, 35mulcld 11310 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))) ∈ ℂ)
3734, 36addcld 11309 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) ∈ ℂ)
3833, 32addcomd 11492 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) · (𝐶↑2)) + ((𝐵↑2) · (𝐶↑2))) = (((𝐵↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐶↑2))))
3922, 21, 26mul12d 11499 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐵↑2) · ((𝐴↑2) · (𝑅↑2))) = ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))))
4039oveq2d 7464 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐵↑2) · ((𝐴↑2) · (𝑅↑2)))) = (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))
4138, 40oveq12d 7466 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐴↑2) · (𝐶↑2)) + ((𝐵↑2) · (𝐶↑2))) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐵↑2) · ((𝐴↑2) · (𝑅↑2))))) = ((((𝐵↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐶↑2))) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))))))
4232, 33, 37, 41assraddsubd 11704 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐴↑2) · (𝐶↑2)) + ((𝐵↑2) · (𝐶↑2))) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐵↑2) · ((𝐴↑2) · (𝑅↑2))))) = (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))
4328, 31, 423eqtrd 2784 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))) = (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))
4419, 43eqtrid 2792 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝑄 · 𝑈) = (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))
4544oveq2d 7464 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (4 · (𝑄 · 𝑈)) = (4 · (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))))))))
4616, 45oveq12d 7466 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑇↑2) − (4 · (𝑄 · 𝑈))) = ((4 · ((𝐵↑2) · (𝐶↑2))) − (4 · (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))))
47 4cn 12378 . . . . 5 4 ∈ ℂ
4847a1i 11 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 4 ∈ ℂ)
49 simp1 1136 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ ℂ)
5049sqcld 14194 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴↑2) ∈ ℂ)
5150adantr 480 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (𝐴↑2) ∈ ℂ)
52 itsclc0yqsollem1.d . . . . 5 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
5317, 23eqeltrid 2848 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝑄 ∈ ℂ)
5426, 53mulcld 11310 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑅↑2) · 𝑄) ∈ ℂ)
5554, 24subcld 11647 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝑅↑2) · 𝑄) − (𝐶↑2)) ∈ ℂ)
5652, 55eqeltrid 2848 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝐷 ∈ ℂ)
5748, 51, 56mulassd 11313 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((4 · (𝐴↑2)) · 𝐷) = (4 · ((𝐴↑2) · 𝐷)))
5833, 37subcld 11647 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))))) ∈ ℂ)
5932, 32, 58subsub4d 11678 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐵↑2) · (𝐶↑2)) − ((𝐵↑2) · (𝐶↑2))) − (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))) = (((𝐵↑2) · (𝐶↑2)) − (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))))))))
6032subidd 11635 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐵↑2) · (𝐶↑2)) − ((𝐵↑2) · (𝐶↑2))) = 0)
6160oveq1d 7463 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐵↑2) · (𝐶↑2)) − ((𝐵↑2) · (𝐶↑2))) − (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))) = (0 − (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))
62 0cnd 11283 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 0 ∈ ℂ)
6362, 33, 37subsub2d 11676 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (0 − (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))) = (0 + ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2)))))
6437, 33subcld 11647 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2))) ∈ ℂ)
6564addlidd 11491 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (0 + ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2)))) = ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2))))
6661, 63, 653eqtrd 2784 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐵↑2) · (𝐶↑2)) − ((𝐵↑2) · (𝐶↑2))) − (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))) = ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2))))
6759, 66eqtr3d 2782 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐵↑2) · (𝐶↑2)) − (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))))))) = ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2))))
6821, 27, 35adddid 11314 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · (((𝐴↑2) · (𝑅↑2)) + ((𝐵↑2) · (𝑅↑2)))) = (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))
6921, 22, 26adddird 11315 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) = (((𝐴↑2) · (𝑅↑2)) + ((𝐵↑2) · (𝑅↑2))))
7069eqcomd 2746 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) · (𝑅↑2)) + ((𝐵↑2) · (𝑅↑2))) = (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)))
7170oveq2d 7464 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · (((𝐴↑2) · (𝑅↑2)) + ((𝐵↑2) · (𝑅↑2)))) = ((𝐴↑2) · (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2))))
7268, 71eqtr3d 2782 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) = ((𝐴↑2) · (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2))))
7372oveq1d 7463 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2))) = (((𝐴↑2) · (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2))) − ((𝐴↑2) · (𝐶↑2))))
7423, 26mulcld 11310 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) ∈ ℂ)
7521, 74, 24subdid 11746 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · ((((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) − (𝐶↑2))) = (((𝐴↑2) · (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2))) − ((𝐴↑2) · (𝐶↑2))))
7673, 75eqtr4d 2783 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))) − ((𝐴↑2) · (𝐶↑2))) = ((𝐴↑2) · ((((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) − (𝐶↑2))))
7717a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝑄 = ((𝐴↑2) + (𝐵↑2)))
7877oveq2d 7464 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑅↑2) · 𝑄) = ((𝑅↑2) · ((𝐴↑2) + (𝐵↑2))))
7926, 23mulcomd 11311 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑅↑2) · ((𝐴↑2) + (𝐵↑2))) = (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)))
8078, 79eqtrd 2780 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑅↑2) · 𝑄) = (((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)))
8180oveq1d 7463 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝑅↑2) · 𝑄) − (𝐶↑2)) = ((((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) − (𝐶↑2)))
8252, 81eqtrid 2792 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → 𝐷 = ((((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) − (𝐶↑2)))
8382eqcomd 2746 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) − (𝐶↑2)) = 𝐷)
8483oveq2d 7464 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝐴↑2) · ((((𝐴↑2) + (𝐵↑2)) · (𝑅↑2)) − (𝐶↑2))) = ((𝐴↑2) · 𝐷))
8567, 76, 843eqtrd 2784 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐵↑2) · (𝐶↑2)) − (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2))))))) = ((𝐴↑2) · 𝐷))
8685oveq2d 7464 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (4 · (((𝐵↑2) · (𝐶↑2)) − (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))) = (4 · ((𝐴↑2) · 𝐷)))
8732, 58addcld 11309 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))) ∈ ℂ)
8848, 32, 87subdid 11746 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → (4 · (((𝐵↑2) · (𝐶↑2)) − (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))) = ((4 · ((𝐵↑2) · (𝐶↑2))) − (4 · (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))))
8957, 86, 883eqtr2rd 2787 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((4 · ((𝐵↑2) · (𝐶↑2))) − (4 · (((𝐵↑2) · (𝐶↑2)) + (((𝐴↑2) · (𝐶↑2)) − (((𝐴↑2) · ((𝐴↑2) · (𝑅↑2))) + ((𝐴↑2) · ((𝐵↑2) · (𝑅↑2)))))))) = ((4 · (𝐴↑2)) · 𝐷))
9046, 89eqtrd 2780 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑇↑2) − (4 · (𝑄 · 𝑈))) = ((4 · (𝐴↑2)) · 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  (class class class)co 7448  cc 11182  0cc0 11184   + caddc 11187   · cmul 11189  cmin 11520  -cneg 11521  2c2 12348  4c4 12350  cexp 14112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-n0 12554  df-z 12640  df-uz 12904  df-seq 14053  df-exp 14113
This theorem is referenced by:  itsclc0yqsollem2  48497
  Copyright terms: Public domain W3C validator