| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2tnp1ge0ge0 | Structured version Visualization version GIF version | ||
| Description: Two times an integer plus one is not negative iff the integer is not negative. (Contributed by AV, 19-Jun-2021.) (Proof shortened by AV, 10-Jul-2022.) |
| Ref | Expression |
|---|---|
| 2tnp1ge0ge0 | ⊢ (𝑁 ∈ ℤ → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z 12565 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 2 | 1 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℤ) |
| 3 | id 22 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℤ) | |
| 4 | 2, 3 | zmulcld 12644 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℤ) |
| 5 | 4 | peano2zd 12641 | . . . 4 ⊢ (𝑁 ∈ ℤ → ((2 · 𝑁) + 1) ∈ ℤ) |
| 6 | 5 | zred 12638 | . . 3 ⊢ (𝑁 ∈ ℤ → ((2 · 𝑁) + 1) ∈ ℝ) |
| 7 | 2rp 12956 | . . . 4 ⊢ 2 ∈ ℝ+ | |
| 8 | 7 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℝ+) |
| 9 | 6, 8 | ge0divd 13033 | . 2 ⊢ (𝑁 ∈ ℤ → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ (((2 · 𝑁) + 1) / 2))) |
| 10 | 4 | zcnd 12639 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℂ) |
| 11 | 1cnd 11169 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℂ) | |
| 12 | 2cnne0 12391 | . . . . . 6 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
| 13 | 12 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (2 ∈ ℂ ∧ 2 ≠ 0)) |
| 14 | divdir 11862 | . . . . 5 ⊢ (((2 · 𝑁) ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((2 · 𝑁) + 1) / 2) = (((2 · 𝑁) / 2) + (1 / 2))) | |
| 15 | 10, 11, 13, 14 | syl3anc 1373 | . . . 4 ⊢ (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (((2 · 𝑁) / 2) + (1 / 2))) |
| 16 | zcn 12534 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 17 | 2cnd 12264 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℂ) | |
| 18 | 2ne0 12290 | . . . . . . 7 ⊢ 2 ≠ 0 | |
| 19 | 18 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 2 ≠ 0) |
| 20 | 16, 17, 19 | divcan3d 11963 | . . . . 5 ⊢ (𝑁 ∈ ℤ → ((2 · 𝑁) / 2) = 𝑁) |
| 21 | 20 | oveq1d 7402 | . . . 4 ⊢ (𝑁 ∈ ℤ → (((2 · 𝑁) / 2) + (1 / 2)) = (𝑁 + (1 / 2))) |
| 22 | 15, 21 | eqtrd 2764 | . . 3 ⊢ (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (𝑁 + (1 / 2))) |
| 23 | 22 | breq2d 5119 | . 2 ⊢ (𝑁 ∈ ℤ → (0 ≤ (((2 · 𝑁) + 1) / 2) ↔ 0 ≤ (𝑁 + (1 / 2)))) |
| 24 | zre 12533 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 25 | halfre 12395 | . . . . 5 ⊢ (1 / 2) ∈ ℝ | |
| 26 | 25 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℤ → (1 / 2) ∈ ℝ) |
| 27 | 24, 26 | readdcld 11203 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 + (1 / 2)) ∈ ℝ) |
| 28 | halfge0 12398 | . . . 4 ⊢ 0 ≤ (1 / 2) | |
| 29 | 24, 26 | addge01d 11766 | . . . 4 ⊢ (𝑁 ∈ ℤ → (0 ≤ (1 / 2) ↔ 𝑁 ≤ (𝑁 + (1 / 2)))) |
| 30 | 28, 29 | mpbii 233 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ≤ (𝑁 + (1 / 2))) |
| 31 | 1red 11175 | . . . 4 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℝ) | |
| 32 | halflt1 12399 | . . . . 5 ⊢ (1 / 2) < 1 | |
| 33 | 32 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℤ → (1 / 2) < 1) |
| 34 | 26, 31, 24, 33 | ltadd2dd 11333 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 + (1 / 2)) < (𝑁 + 1)) |
| 35 | btwnzge0 13790 | . . 3 ⊢ ((((𝑁 + (1 / 2)) ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ (𝑁 + (1 / 2)) ∧ (𝑁 + (1 / 2)) < (𝑁 + 1))) → (0 ≤ (𝑁 + (1 / 2)) ↔ 0 ≤ 𝑁)) | |
| 36 | 27, 3, 30, 34, 35 | syl22anc 838 | . 2 ⊢ (𝑁 ∈ ℤ → (0 ≤ (𝑁 + (1 / 2)) ↔ 0 ≤ 𝑁)) |
| 37 | 9, 23, 36 | 3bitrd 305 | 1 ⊢ (𝑁 ∈ ℤ → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5107 (class class class)co 7387 ℂcc 11066 ℝcr 11067 0cc0 11068 1c1 11069 + caddc 11071 · cmul 11073 < clt 11208 ≤ cle 11209 / cdiv 11835 2c2 12241 ℤcz 12529 ℝ+crp 12951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fl 13754 |
| This theorem is referenced by: oddnn02np1 16318 |
| Copyright terms: Public domain | W3C validator |