MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2tnp1ge0ge0 Structured version   Visualization version   GIF version

Theorem 2tnp1ge0ge0 13880
Description: Two times an integer plus one is not negative iff the integer is not negative. (Contributed by AV, 19-Jun-2021.) (Proof shortened by AV, 10-Jul-2022.)
Assertion
Ref Expression
2tnp1ge0ge0 (𝑁 ∈ ℤ → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ 𝑁))

Proof of Theorem 2tnp1ge0ge0
StepHypRef Expression
1 2z 12675 . . . . . . 7 2 ∈ ℤ
21a1i 11 . . . . . 6 (𝑁 ∈ ℤ → 2 ∈ ℤ)
3 id 22 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℤ)
42, 3zmulcld 12753 . . . . 5 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℤ)
54peano2zd 12750 . . . 4 (𝑁 ∈ ℤ → ((2 · 𝑁) + 1) ∈ ℤ)
65zred 12747 . . 3 (𝑁 ∈ ℤ → ((2 · 𝑁) + 1) ∈ ℝ)
7 2rp 13062 . . . 4 2 ∈ ℝ+
87a1i 11 . . 3 (𝑁 ∈ ℤ → 2 ∈ ℝ+)
96, 8ge0divd 13137 . 2 (𝑁 ∈ ℤ → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ (((2 · 𝑁) + 1) / 2)))
104zcnd 12748 . . . . 5 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℂ)
11 1cnd 11285 . . . . 5 (𝑁 ∈ ℤ → 1 ∈ ℂ)
12 2cnne0 12503 . . . . . 6 (2 ∈ ℂ ∧ 2 ≠ 0)
1312a1i 11 . . . . 5 (𝑁 ∈ ℤ → (2 ∈ ℂ ∧ 2 ≠ 0))
14 divdir 11974 . . . . 5 (((2 · 𝑁) ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((2 · 𝑁) + 1) / 2) = (((2 · 𝑁) / 2) + (1 / 2)))
1510, 11, 13, 14syl3anc 1371 . . . 4 (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (((2 · 𝑁) / 2) + (1 / 2)))
16 zcn 12644 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
17 2cnd 12371 . . . . . 6 (𝑁 ∈ ℤ → 2 ∈ ℂ)
18 2ne0 12397 . . . . . . 7 2 ≠ 0
1918a1i 11 . . . . . 6 (𝑁 ∈ ℤ → 2 ≠ 0)
2016, 17, 19divcan3d 12075 . . . . 5 (𝑁 ∈ ℤ → ((2 · 𝑁) / 2) = 𝑁)
2120oveq1d 7463 . . . 4 (𝑁 ∈ ℤ → (((2 · 𝑁) / 2) + (1 / 2)) = (𝑁 + (1 / 2)))
2215, 21eqtrd 2780 . . 3 (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (𝑁 + (1 / 2)))
2322breq2d 5178 . 2 (𝑁 ∈ ℤ → (0 ≤ (((2 · 𝑁) + 1) / 2) ↔ 0 ≤ (𝑁 + (1 / 2))))
24 zre 12643 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
25 halfre 12507 . . . . 5 (1 / 2) ∈ ℝ
2625a1i 11 . . . 4 (𝑁 ∈ ℤ → (1 / 2) ∈ ℝ)
2724, 26readdcld 11319 . . 3 (𝑁 ∈ ℤ → (𝑁 + (1 / 2)) ∈ ℝ)
28 halfge0 12510 . . . 4 0 ≤ (1 / 2)
2924, 26addge01d 11878 . . . 4 (𝑁 ∈ ℤ → (0 ≤ (1 / 2) ↔ 𝑁 ≤ (𝑁 + (1 / 2))))
3028, 29mpbii 233 . . 3 (𝑁 ∈ ℤ → 𝑁 ≤ (𝑁 + (1 / 2)))
31 1red 11291 . . . 4 (𝑁 ∈ ℤ → 1 ∈ ℝ)
32 halflt1 12511 . . . . 5 (1 / 2) < 1
3332a1i 11 . . . 4 (𝑁 ∈ ℤ → (1 / 2) < 1)
3426, 31, 24, 33ltadd2dd 11449 . . 3 (𝑁 ∈ ℤ → (𝑁 + (1 / 2)) < (𝑁 + 1))
35 btwnzge0 13879 . . 3 ((((𝑁 + (1 / 2)) ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ (𝑁 + (1 / 2)) ∧ (𝑁 + (1 / 2)) < (𝑁 + 1))) → (0 ≤ (𝑁 + (1 / 2)) ↔ 0 ≤ 𝑁))
3627, 3, 30, 34, 35syl22anc 838 . 2 (𝑁 ∈ ℤ → (0 ≤ (𝑁 + (1 / 2)) ↔ 0 ≤ 𝑁))
379, 23, 363bitrd 305 1 (𝑁 ∈ ℤ → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325   / cdiv 11947  2c2 12348  cz 12639  +crp 13057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fl 13843
This theorem is referenced by:  oddnn02np1  16396
  Copyright terms: Public domain W3C validator