MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2tnp1ge0ge0 Structured version   Visualization version   GIF version

Theorem 2tnp1ge0ge0 13767
Description: Two times an integer plus one is not negative iff the integer is not negative. (Contributed by AV, 19-Jun-2021.) (Proof shortened by AV, 10-Jul-2022.)
Assertion
Ref Expression
2tnp1ge0ge0 (𝑁 ∈ ℤ → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ 𝑁))

Proof of Theorem 2tnp1ge0ge0
StepHypRef Expression
1 2z 12541 . . . . . . 7 2 ∈ ℤ
21a1i 11 . . . . . 6 (𝑁 ∈ ℤ → 2 ∈ ℤ)
3 id 22 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℤ)
42, 3zmulcld 12620 . . . . 5 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℤ)
54peano2zd 12617 . . . 4 (𝑁 ∈ ℤ → ((2 · 𝑁) + 1) ∈ ℤ)
65zred 12614 . . 3 (𝑁 ∈ ℤ → ((2 · 𝑁) + 1) ∈ ℝ)
7 2rp 12932 . . . 4 2 ∈ ℝ+
87a1i 11 . . 3 (𝑁 ∈ ℤ → 2 ∈ ℝ+)
96, 8ge0divd 13009 . 2 (𝑁 ∈ ℤ → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ (((2 · 𝑁) + 1) / 2)))
104zcnd 12615 . . . . 5 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℂ)
11 1cnd 11145 . . . . 5 (𝑁 ∈ ℤ → 1 ∈ ℂ)
12 2cnne0 12367 . . . . . 6 (2 ∈ ℂ ∧ 2 ≠ 0)
1312a1i 11 . . . . 5 (𝑁 ∈ ℤ → (2 ∈ ℂ ∧ 2 ≠ 0))
14 divdir 11838 . . . . 5 (((2 · 𝑁) ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((2 · 𝑁) + 1) / 2) = (((2 · 𝑁) / 2) + (1 / 2)))
1510, 11, 13, 14syl3anc 1373 . . . 4 (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (((2 · 𝑁) / 2) + (1 / 2)))
16 zcn 12510 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
17 2cnd 12240 . . . . . 6 (𝑁 ∈ ℤ → 2 ∈ ℂ)
18 2ne0 12266 . . . . . . 7 2 ≠ 0
1918a1i 11 . . . . . 6 (𝑁 ∈ ℤ → 2 ≠ 0)
2016, 17, 19divcan3d 11939 . . . . 5 (𝑁 ∈ ℤ → ((2 · 𝑁) / 2) = 𝑁)
2120oveq1d 7384 . . . 4 (𝑁 ∈ ℤ → (((2 · 𝑁) / 2) + (1 / 2)) = (𝑁 + (1 / 2)))
2215, 21eqtrd 2764 . . 3 (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (𝑁 + (1 / 2)))
2322breq2d 5114 . 2 (𝑁 ∈ ℤ → (0 ≤ (((2 · 𝑁) + 1) / 2) ↔ 0 ≤ (𝑁 + (1 / 2))))
24 zre 12509 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
25 halfre 12371 . . . . 5 (1 / 2) ∈ ℝ
2625a1i 11 . . . 4 (𝑁 ∈ ℤ → (1 / 2) ∈ ℝ)
2724, 26readdcld 11179 . . 3 (𝑁 ∈ ℤ → (𝑁 + (1 / 2)) ∈ ℝ)
28 halfge0 12374 . . . 4 0 ≤ (1 / 2)
2924, 26addge01d 11742 . . . 4 (𝑁 ∈ ℤ → (0 ≤ (1 / 2) ↔ 𝑁 ≤ (𝑁 + (1 / 2))))
3028, 29mpbii 233 . . 3 (𝑁 ∈ ℤ → 𝑁 ≤ (𝑁 + (1 / 2)))
31 1red 11151 . . . 4 (𝑁 ∈ ℤ → 1 ∈ ℝ)
32 halflt1 12375 . . . . 5 (1 / 2) < 1
3332a1i 11 . . . 4 (𝑁 ∈ ℤ → (1 / 2) < 1)
3426, 31, 24, 33ltadd2dd 11309 . . 3 (𝑁 ∈ ℤ → (𝑁 + (1 / 2)) < (𝑁 + 1))
35 btwnzge0 13766 . . 3 ((((𝑁 + (1 / 2)) ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ (𝑁 + (1 / 2)) ∧ (𝑁 + (1 / 2)) < (𝑁 + 1))) → (0 ≤ (𝑁 + (1 / 2)) ↔ 0 ≤ 𝑁))
3627, 3, 30, 34, 35syl22anc 838 . 2 (𝑁 ∈ ℤ → (0 ≤ (𝑁 + (1 / 2)) ↔ 0 ≤ 𝑁))
379, 23, 363bitrd 305 1 (𝑁 ∈ ℤ → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185   / cdiv 11811  2c2 12217  cz 12505  +crp 12927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fl 13730
This theorem is referenced by:  oddnn02np1  16294
  Copyright terms: Public domain W3C validator