| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2tnp1ge0ge0 | Structured version Visualization version GIF version | ||
| Description: Two times an integer plus one is not negative iff the integer is not negative. (Contributed by AV, 19-Jun-2021.) (Proof shortened by AV, 10-Jul-2022.) |
| Ref | Expression |
|---|---|
| 2tnp1ge0ge0 | ⊢ (𝑁 ∈ ℤ → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z 12541 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 2 | 1 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℤ) |
| 3 | id 22 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℤ) | |
| 4 | 2, 3 | zmulcld 12620 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℤ) |
| 5 | 4 | peano2zd 12617 | . . . 4 ⊢ (𝑁 ∈ ℤ → ((2 · 𝑁) + 1) ∈ ℤ) |
| 6 | 5 | zred 12614 | . . 3 ⊢ (𝑁 ∈ ℤ → ((2 · 𝑁) + 1) ∈ ℝ) |
| 7 | 2rp 12932 | . . . 4 ⊢ 2 ∈ ℝ+ | |
| 8 | 7 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℝ+) |
| 9 | 6, 8 | ge0divd 13009 | . 2 ⊢ (𝑁 ∈ ℤ → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ (((2 · 𝑁) + 1) / 2))) |
| 10 | 4 | zcnd 12615 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℂ) |
| 11 | 1cnd 11145 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℂ) | |
| 12 | 2cnne0 12367 | . . . . . 6 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
| 13 | 12 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (2 ∈ ℂ ∧ 2 ≠ 0)) |
| 14 | divdir 11838 | . . . . 5 ⊢ (((2 · 𝑁) ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((2 · 𝑁) + 1) / 2) = (((2 · 𝑁) / 2) + (1 / 2))) | |
| 15 | 10, 11, 13, 14 | syl3anc 1373 | . . . 4 ⊢ (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (((2 · 𝑁) / 2) + (1 / 2))) |
| 16 | zcn 12510 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 17 | 2cnd 12240 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℂ) | |
| 18 | 2ne0 12266 | . . . . . . 7 ⊢ 2 ≠ 0 | |
| 19 | 18 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 2 ≠ 0) |
| 20 | 16, 17, 19 | divcan3d 11939 | . . . . 5 ⊢ (𝑁 ∈ ℤ → ((2 · 𝑁) / 2) = 𝑁) |
| 21 | 20 | oveq1d 7384 | . . . 4 ⊢ (𝑁 ∈ ℤ → (((2 · 𝑁) / 2) + (1 / 2)) = (𝑁 + (1 / 2))) |
| 22 | 15, 21 | eqtrd 2764 | . . 3 ⊢ (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (𝑁 + (1 / 2))) |
| 23 | 22 | breq2d 5114 | . 2 ⊢ (𝑁 ∈ ℤ → (0 ≤ (((2 · 𝑁) + 1) / 2) ↔ 0 ≤ (𝑁 + (1 / 2)))) |
| 24 | zre 12509 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 25 | halfre 12371 | . . . . 5 ⊢ (1 / 2) ∈ ℝ | |
| 26 | 25 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℤ → (1 / 2) ∈ ℝ) |
| 27 | 24, 26 | readdcld 11179 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 + (1 / 2)) ∈ ℝ) |
| 28 | halfge0 12374 | . . . 4 ⊢ 0 ≤ (1 / 2) | |
| 29 | 24, 26 | addge01d 11742 | . . . 4 ⊢ (𝑁 ∈ ℤ → (0 ≤ (1 / 2) ↔ 𝑁 ≤ (𝑁 + (1 / 2)))) |
| 30 | 28, 29 | mpbii 233 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ≤ (𝑁 + (1 / 2))) |
| 31 | 1red 11151 | . . . 4 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℝ) | |
| 32 | halflt1 12375 | . . . . 5 ⊢ (1 / 2) < 1 | |
| 33 | 32 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℤ → (1 / 2) < 1) |
| 34 | 26, 31, 24, 33 | ltadd2dd 11309 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 + (1 / 2)) < (𝑁 + 1)) |
| 35 | btwnzge0 13766 | . . 3 ⊢ ((((𝑁 + (1 / 2)) ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ (𝑁 + (1 / 2)) ∧ (𝑁 + (1 / 2)) < (𝑁 + 1))) → (0 ≤ (𝑁 + (1 / 2)) ↔ 0 ≤ 𝑁)) | |
| 36 | 27, 3, 30, 34, 35 | syl22anc 838 | . 2 ⊢ (𝑁 ∈ ℤ → (0 ≤ (𝑁 + (1 / 2)) ↔ 0 ≤ 𝑁)) |
| 37 | 9, 23, 36 | 3bitrd 305 | 1 ⊢ (𝑁 ∈ ℤ → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5102 (class class class)co 7369 ℂcc 11042 ℝcr 11043 0cc0 11044 1c1 11045 + caddc 11047 · cmul 11049 < clt 11184 ≤ cle 11185 / cdiv 11811 2c2 12217 ℤcz 12505 ℝ+crp 12927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-fl 13730 |
| This theorem is referenced by: oddnn02np1 16294 |
| Copyright terms: Public domain | W3C validator |