Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2tnp1ge0ge0 | Structured version Visualization version GIF version |
Description: Two times an integer plus one is not negative iff the integer is not negative. (Contributed by AV, 19-Jun-2021.) (Proof shortened by AV, 10-Jul-2022.) |
Ref | Expression |
---|---|
2tnp1ge0ge0 | ⊢ (𝑁 ∈ ℤ → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2z 12282 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
2 | 1 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℤ) |
3 | id 22 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℤ) | |
4 | 2, 3 | zmulcld 12361 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℤ) |
5 | 4 | peano2zd 12358 | . . . 4 ⊢ (𝑁 ∈ ℤ → ((2 · 𝑁) + 1) ∈ ℤ) |
6 | 5 | zred 12355 | . . 3 ⊢ (𝑁 ∈ ℤ → ((2 · 𝑁) + 1) ∈ ℝ) |
7 | 2rp 12664 | . . . 4 ⊢ 2 ∈ ℝ+ | |
8 | 7 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℝ+) |
9 | 6, 8 | ge0divd 12739 | . 2 ⊢ (𝑁 ∈ ℤ → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ (((2 · 𝑁) + 1) / 2))) |
10 | 4 | zcnd 12356 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℂ) |
11 | 1cnd 10901 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℂ) | |
12 | 2cnne0 12113 | . . . . . 6 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
13 | 12 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (2 ∈ ℂ ∧ 2 ≠ 0)) |
14 | divdir 11588 | . . . . 5 ⊢ (((2 · 𝑁) ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((2 · 𝑁) + 1) / 2) = (((2 · 𝑁) / 2) + (1 / 2))) | |
15 | 10, 11, 13, 14 | syl3anc 1369 | . . . 4 ⊢ (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (((2 · 𝑁) / 2) + (1 / 2))) |
16 | zcn 12254 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
17 | 2cnd 11981 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℂ) | |
18 | 2ne0 12007 | . . . . . . 7 ⊢ 2 ≠ 0 | |
19 | 18 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 2 ≠ 0) |
20 | 16, 17, 19 | divcan3d 11686 | . . . . 5 ⊢ (𝑁 ∈ ℤ → ((2 · 𝑁) / 2) = 𝑁) |
21 | 20 | oveq1d 7270 | . . . 4 ⊢ (𝑁 ∈ ℤ → (((2 · 𝑁) / 2) + (1 / 2)) = (𝑁 + (1 / 2))) |
22 | 15, 21 | eqtrd 2778 | . . 3 ⊢ (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (𝑁 + (1 / 2))) |
23 | 22 | breq2d 5082 | . 2 ⊢ (𝑁 ∈ ℤ → (0 ≤ (((2 · 𝑁) + 1) / 2) ↔ 0 ≤ (𝑁 + (1 / 2)))) |
24 | zre 12253 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
25 | halfre 12117 | . . . . 5 ⊢ (1 / 2) ∈ ℝ | |
26 | 25 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℤ → (1 / 2) ∈ ℝ) |
27 | 24, 26 | readdcld 10935 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 + (1 / 2)) ∈ ℝ) |
28 | halfge0 12120 | . . . 4 ⊢ 0 ≤ (1 / 2) | |
29 | 24, 26 | addge01d 11493 | . . . 4 ⊢ (𝑁 ∈ ℤ → (0 ≤ (1 / 2) ↔ 𝑁 ≤ (𝑁 + (1 / 2)))) |
30 | 28, 29 | mpbii 232 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ≤ (𝑁 + (1 / 2))) |
31 | 1red 10907 | . . . 4 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℝ) | |
32 | halflt1 12121 | . . . . 5 ⊢ (1 / 2) < 1 | |
33 | 32 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℤ → (1 / 2) < 1) |
34 | 26, 31, 24, 33 | ltadd2dd 11064 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 + (1 / 2)) < (𝑁 + 1)) |
35 | btwnzge0 13476 | . . 3 ⊢ ((((𝑁 + (1 / 2)) ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ (𝑁 + (1 / 2)) ∧ (𝑁 + (1 / 2)) < (𝑁 + 1))) → (0 ≤ (𝑁 + (1 / 2)) ↔ 0 ≤ 𝑁)) | |
36 | 27, 3, 30, 34, 35 | syl22anc 835 | . 2 ⊢ (𝑁 ∈ ℤ → (0 ≤ (𝑁 + (1 / 2)) ↔ 0 ≤ 𝑁)) |
37 | 9, 23, 36 | 3bitrd 304 | 1 ⊢ (𝑁 ∈ ℤ → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 (class class class)co 7255 ℂcc 10800 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 < clt 10940 ≤ cle 10941 / cdiv 11562 2c2 11958 ℤcz 12249 ℝ+crp 12659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fl 13440 |
This theorem is referenced by: oddnn02np1 15985 |
Copyright terms: Public domain | W3C validator |