| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2tnp1ge0ge0 | Structured version Visualization version GIF version | ||
| Description: Two times an integer plus one is not negative iff the integer is not negative. (Contributed by AV, 19-Jun-2021.) (Proof shortened by AV, 10-Jul-2022.) |
| Ref | Expression |
|---|---|
| 2tnp1ge0ge0 | ⊢ (𝑁 ∈ ℤ → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z 12504 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 2 | 1 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℤ) |
| 3 | id 22 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℤ) | |
| 4 | 2, 3 | zmulcld 12583 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℤ) |
| 5 | 4 | peano2zd 12580 | . . . 4 ⊢ (𝑁 ∈ ℤ → ((2 · 𝑁) + 1) ∈ ℤ) |
| 6 | 5 | zred 12577 | . . 3 ⊢ (𝑁 ∈ ℤ → ((2 · 𝑁) + 1) ∈ ℝ) |
| 7 | 2rp 12895 | . . . 4 ⊢ 2 ∈ ℝ+ | |
| 8 | 7 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℝ+) |
| 9 | 6, 8 | ge0divd 12972 | . 2 ⊢ (𝑁 ∈ ℤ → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ (((2 · 𝑁) + 1) / 2))) |
| 10 | 4 | zcnd 12578 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℂ) |
| 11 | 1cnd 11107 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℂ) | |
| 12 | 2cnne0 12330 | . . . . . 6 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
| 13 | 12 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (2 ∈ ℂ ∧ 2 ≠ 0)) |
| 14 | divdir 11801 | . . . . 5 ⊢ (((2 · 𝑁) ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((2 · 𝑁) + 1) / 2) = (((2 · 𝑁) / 2) + (1 / 2))) | |
| 15 | 10, 11, 13, 14 | syl3anc 1373 | . . . 4 ⊢ (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (((2 · 𝑁) / 2) + (1 / 2))) |
| 16 | zcn 12473 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 17 | 2cnd 12203 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℂ) | |
| 18 | 2ne0 12229 | . . . . . . 7 ⊢ 2 ≠ 0 | |
| 19 | 18 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 2 ≠ 0) |
| 20 | 16, 17, 19 | divcan3d 11902 | . . . . 5 ⊢ (𝑁 ∈ ℤ → ((2 · 𝑁) / 2) = 𝑁) |
| 21 | 20 | oveq1d 7361 | . . . 4 ⊢ (𝑁 ∈ ℤ → (((2 · 𝑁) / 2) + (1 / 2)) = (𝑁 + (1 / 2))) |
| 22 | 15, 21 | eqtrd 2766 | . . 3 ⊢ (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (𝑁 + (1 / 2))) |
| 23 | 22 | breq2d 5101 | . 2 ⊢ (𝑁 ∈ ℤ → (0 ≤ (((2 · 𝑁) + 1) / 2) ↔ 0 ≤ (𝑁 + (1 / 2)))) |
| 24 | zre 12472 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 25 | halfre 12334 | . . . . 5 ⊢ (1 / 2) ∈ ℝ | |
| 26 | 25 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℤ → (1 / 2) ∈ ℝ) |
| 27 | 24, 26 | readdcld 11141 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 + (1 / 2)) ∈ ℝ) |
| 28 | halfge0 12337 | . . . 4 ⊢ 0 ≤ (1 / 2) | |
| 29 | 24, 26 | addge01d 11705 | . . . 4 ⊢ (𝑁 ∈ ℤ → (0 ≤ (1 / 2) ↔ 𝑁 ≤ (𝑁 + (1 / 2)))) |
| 30 | 28, 29 | mpbii 233 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ≤ (𝑁 + (1 / 2))) |
| 31 | 1red 11113 | . . . 4 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℝ) | |
| 32 | halflt1 12338 | . . . . 5 ⊢ (1 / 2) < 1 | |
| 33 | 32 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℤ → (1 / 2) < 1) |
| 34 | 26, 31, 24, 33 | ltadd2dd 11272 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 + (1 / 2)) < (𝑁 + 1)) |
| 35 | btwnzge0 13732 | . . 3 ⊢ ((((𝑁 + (1 / 2)) ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ (𝑁 + (1 / 2)) ∧ (𝑁 + (1 / 2)) < (𝑁 + 1))) → (0 ≤ (𝑁 + (1 / 2)) ↔ 0 ≤ 𝑁)) | |
| 36 | 27, 3, 30, 34, 35 | syl22anc 838 | . 2 ⊢ (𝑁 ∈ ℤ → (0 ≤ (𝑁 + (1 / 2)) ↔ 0 ≤ 𝑁)) |
| 37 | 9, 23, 36 | 3bitrd 305 | 1 ⊢ (𝑁 ∈ ℤ → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5089 (class class class)co 7346 ℂcc 11004 ℝcr 11005 0cc0 11006 1c1 11007 + caddc 11009 · cmul 11011 < clt 11146 ≤ cle 11147 / cdiv 11774 2c2 12180 ℤcz 12468 ℝ+crp 12890 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fl 13696 |
| This theorem is referenced by: oddnn02np1 16259 |
| Copyright terms: Public domain | W3C validator |