![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2tnp1ge0ge0 | Structured version Visualization version GIF version |
Description: Two times an integer plus one is not negative iff the integer is not negative. (Contributed by AV, 19-Jun-2021.) (Proof shortened by AV, 10-Jul-2022.) |
Ref | Expression |
---|---|
2tnp1ge0ge0 | ⊢ (𝑁 ∈ ℤ → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2z 12675 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
2 | 1 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℤ) |
3 | id 22 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℤ) | |
4 | 2, 3 | zmulcld 12753 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℤ) |
5 | 4 | peano2zd 12750 | . . . 4 ⊢ (𝑁 ∈ ℤ → ((2 · 𝑁) + 1) ∈ ℤ) |
6 | 5 | zred 12747 | . . 3 ⊢ (𝑁 ∈ ℤ → ((2 · 𝑁) + 1) ∈ ℝ) |
7 | 2rp 13062 | . . . 4 ⊢ 2 ∈ ℝ+ | |
8 | 7 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℝ+) |
9 | 6, 8 | ge0divd 13137 | . 2 ⊢ (𝑁 ∈ ℤ → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ (((2 · 𝑁) + 1) / 2))) |
10 | 4 | zcnd 12748 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℂ) |
11 | 1cnd 11285 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℂ) | |
12 | 2cnne0 12503 | . . . . . 6 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
13 | 12 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (2 ∈ ℂ ∧ 2 ≠ 0)) |
14 | divdir 11974 | . . . . 5 ⊢ (((2 · 𝑁) ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((2 · 𝑁) + 1) / 2) = (((2 · 𝑁) / 2) + (1 / 2))) | |
15 | 10, 11, 13, 14 | syl3anc 1371 | . . . 4 ⊢ (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (((2 · 𝑁) / 2) + (1 / 2))) |
16 | zcn 12644 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
17 | 2cnd 12371 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℂ) | |
18 | 2ne0 12397 | . . . . . . 7 ⊢ 2 ≠ 0 | |
19 | 18 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 2 ≠ 0) |
20 | 16, 17, 19 | divcan3d 12075 | . . . . 5 ⊢ (𝑁 ∈ ℤ → ((2 · 𝑁) / 2) = 𝑁) |
21 | 20 | oveq1d 7463 | . . . 4 ⊢ (𝑁 ∈ ℤ → (((2 · 𝑁) / 2) + (1 / 2)) = (𝑁 + (1 / 2))) |
22 | 15, 21 | eqtrd 2780 | . . 3 ⊢ (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (𝑁 + (1 / 2))) |
23 | 22 | breq2d 5178 | . 2 ⊢ (𝑁 ∈ ℤ → (0 ≤ (((2 · 𝑁) + 1) / 2) ↔ 0 ≤ (𝑁 + (1 / 2)))) |
24 | zre 12643 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
25 | halfre 12507 | . . . . 5 ⊢ (1 / 2) ∈ ℝ | |
26 | 25 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℤ → (1 / 2) ∈ ℝ) |
27 | 24, 26 | readdcld 11319 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 + (1 / 2)) ∈ ℝ) |
28 | halfge0 12510 | . . . 4 ⊢ 0 ≤ (1 / 2) | |
29 | 24, 26 | addge01d 11878 | . . . 4 ⊢ (𝑁 ∈ ℤ → (0 ≤ (1 / 2) ↔ 𝑁 ≤ (𝑁 + (1 / 2)))) |
30 | 28, 29 | mpbii 233 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ≤ (𝑁 + (1 / 2))) |
31 | 1red 11291 | . . . 4 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℝ) | |
32 | halflt1 12511 | . . . . 5 ⊢ (1 / 2) < 1 | |
33 | 32 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℤ → (1 / 2) < 1) |
34 | 26, 31, 24, 33 | ltadd2dd 11449 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 + (1 / 2)) < (𝑁 + 1)) |
35 | btwnzge0 13879 | . . 3 ⊢ ((((𝑁 + (1 / 2)) ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ (𝑁 + (1 / 2)) ∧ (𝑁 + (1 / 2)) < (𝑁 + 1))) → (0 ≤ (𝑁 + (1 / 2)) ↔ 0 ≤ 𝑁)) | |
36 | 27, 3, 30, 34, 35 | syl22anc 838 | . 2 ⊢ (𝑁 ∈ ℤ → (0 ≤ (𝑁 + (1 / 2)) ↔ 0 ≤ 𝑁)) |
37 | 9, 23, 36 | 3bitrd 305 | 1 ⊢ (𝑁 ∈ ℤ → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 class class class wbr 5166 (class class class)co 7448 ℂcc 11182 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 < clt 11324 ≤ cle 11325 / cdiv 11947 2c2 12348 ℤcz 12639 ℝ+crp 13057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fl 13843 |
This theorem is referenced by: oddnn02np1 16396 |
Copyright terms: Public domain | W3C validator |