MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matsubgcell Structured version   Visualization version   GIF version

Theorem matsubgcell 22156
Description: Subtraction in the matrix ring is cell-wise. (Contributed by AV, 2-Aug-2019.)
Hypotheses
Ref Expression
matplusgcell.a 𝐴 = (𝑁 Mat 𝑅)
matplusgcell.b 𝐵 = (Base‘𝐴)
matsubgcell.s 𝑆 = (-g𝐴)
matsubgcell.m = (-g𝑅)
Assertion
Ref Expression
matsubgcell ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋𝑆𝑌)𝐽) = ((𝐼𝑋𝐽) (𝐼𝑌𝐽)))

Proof of Theorem matsubgcell
StepHypRef Expression
1 matsubgcell.s . . . . . 6 𝑆 = (-g𝐴)
2 matplusgcell.a . . . . . . . . . . 11 𝐴 = (𝑁 Mat 𝑅)
3 matplusgcell.b . . . . . . . . . . 11 𝐵 = (Base‘𝐴)
42, 3matrcl 22132 . . . . . . . . . 10 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
54simpld 493 . . . . . . . . 9 (𝑋𝐵𝑁 ∈ Fin)
65adantr 479 . . . . . . . 8 ((𝑋𝐵𝑌𝐵) → 𝑁 ∈ Fin)
763ad2ant2 1132 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑁 ∈ Fin)
8 simp1 1134 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑅 ∈ Ring)
9 eqid 2730 . . . . . . . 8 (𝑅 freeLMod (𝑁 × 𝑁)) = (𝑅 freeLMod (𝑁 × 𝑁))
102, 9matsubg 22154 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (-g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (-g𝐴))
117, 8, 10syl2anc 582 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (-g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (-g𝐴))
121, 11eqtr4id 2789 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑆 = (-g‘(𝑅 freeLMod (𝑁 × 𝑁))))
1312oveqd 7428 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑋𝑆𝑌) = (𝑋(-g‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑌))
14 eqid 2730 . . . . 5 (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘(𝑅 freeLMod (𝑁 × 𝑁)))
15 xpfi 9319 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin)
1615anidms 565 . . . . . . . . 9 (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ Fin)
1716adantr 479 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑁 × 𝑁) ∈ Fin)
184, 17syl 17 . . . . . . 7 (𝑋𝐵 → (𝑁 × 𝑁) ∈ Fin)
1918adantr 479 . . . . . 6 ((𝑋𝐵𝑌𝐵) → (𝑁 × 𝑁) ∈ Fin)
20193ad2ant2 1132 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑁 × 𝑁) ∈ Fin)
213eleq2i 2823 . . . . . . . . 9 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
2221biimpi 215 . . . . . . . 8 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
232, 9matbas 22133 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
244, 23syl 17 . . . . . . . 8 (𝑋𝐵 → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
2522, 24eleqtrrd 2834 . . . . . . 7 (𝑋𝐵𝑋 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
2625adantr 479 . . . . . 6 ((𝑋𝐵𝑌𝐵) → 𝑋 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
27263ad2ant2 1132 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑋 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
283eleq2i 2823 . . . . . . . . 9 (𝑌𝐵𝑌 ∈ (Base‘𝐴))
2928biimpi 215 . . . . . . . 8 (𝑌𝐵𝑌 ∈ (Base‘𝐴))
302, 3matrcl 22132 . . . . . . . . 9 (𝑌𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
3130, 23syl 17 . . . . . . . 8 (𝑌𝐵 → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
3229, 31eleqtrrd 2834 . . . . . . 7 (𝑌𝐵𝑌 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
3332adantl 480 . . . . . 6 ((𝑋𝐵𝑌𝐵) → 𝑌 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
34333ad2ant2 1132 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑌 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
35 matsubgcell.m . . . . 5 = (-g𝑅)
36 eqid 2730 . . . . 5 (-g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (-g‘(𝑅 freeLMod (𝑁 × 𝑁)))
379, 14, 8, 20, 27, 34, 35, 36frlmsubgval 21539 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑋(-g‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑌) = (𝑋f 𝑌))
3813, 37eqtrd 2770 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑋𝑆𝑌) = (𝑋f 𝑌))
3938oveqd 7428 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋𝑆𝑌)𝐽) = (𝐼(𝑋f 𝑌)𝐽))
40 df-ov 7414 . . 3 (𝐼(𝑋f 𝑌)𝐽) = ((𝑋f 𝑌)‘⟨𝐼, 𝐽⟩)
41 opelxpi 5712 . . . . . 6 ((𝐼𝑁𝐽𝑁) → ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁))
4241anim2i 615 . . . . 5 (((𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → ((𝑋𝐵𝑌𝐵) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)))
43423adant1 1128 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → ((𝑋𝐵𝑌𝐵) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)))
44 eqid 2730 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
452, 44, 3matbas2i 22144 . . . . . . 7 (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
46 elmapfn 8861 . . . . . . 7 (𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑋 Fn (𝑁 × 𝑁))
4745, 46syl 17 . . . . . 6 (𝑋𝐵𝑋 Fn (𝑁 × 𝑁))
4847adantr 479 . . . . 5 ((𝑋𝐵𝑌𝐵) → 𝑋 Fn (𝑁 × 𝑁))
492, 44, 3matbas2i 22144 . . . . . . 7 (𝑌𝐵𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
50 elmapfn 8861 . . . . . . 7 (𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑌 Fn (𝑁 × 𝑁))
5149, 50syl 17 . . . . . 6 (𝑌𝐵𝑌 Fn (𝑁 × 𝑁))
5251adantl 480 . . . . 5 ((𝑋𝐵𝑌𝐵) → 𝑌 Fn (𝑁 × 𝑁))
53 inidm 4217 . . . . 5 ((𝑁 × 𝑁) ∩ (𝑁 × 𝑁)) = (𝑁 × 𝑁)
54 df-ov 7414 . . . . . . 7 (𝐼𝑋𝐽) = (𝑋‘⟨𝐼, 𝐽⟩)
5554eqcomi 2739 . . . . . 6 (𝑋‘⟨𝐼, 𝐽⟩) = (𝐼𝑋𝐽)
5655a1i 11 . . . . 5 (((𝑋𝐵𝑌𝐵) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)) → (𝑋‘⟨𝐼, 𝐽⟩) = (𝐼𝑋𝐽))
57 df-ov 7414 . . . . . . 7 (𝐼𝑌𝐽) = (𝑌‘⟨𝐼, 𝐽⟩)
5857eqcomi 2739 . . . . . 6 (𝑌‘⟨𝐼, 𝐽⟩) = (𝐼𝑌𝐽)
5958a1i 11 . . . . 5 (((𝑋𝐵𝑌𝐵) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)) → (𝑌‘⟨𝐼, 𝐽⟩) = (𝐼𝑌𝐽))
6048, 52, 19, 19, 53, 56, 59ofval 7683 . . . 4 (((𝑋𝐵𝑌𝐵) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)) → ((𝑋f 𝑌)‘⟨𝐼, 𝐽⟩) = ((𝐼𝑋𝐽) (𝐼𝑌𝐽)))
6143, 60syl 17 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → ((𝑋f 𝑌)‘⟨𝐼, 𝐽⟩) = ((𝐼𝑋𝐽) (𝐼𝑌𝐽)))
6240, 61eqtrid 2782 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋f 𝑌)𝐽) = ((𝐼𝑋𝐽) (𝐼𝑌𝐽)))
6339, 62eqtrd 2770 1 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋𝑆𝑌)𝐽) = ((𝐼𝑋𝐽) (𝐼𝑌𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1085   = wceq 1539  wcel 2104  Vcvv 3472  cop 4633   × cxp 5673   Fn wfn 6537  cfv 6542  (class class class)co 7411  f cof 7670  m cmap 8822  Fincfn 8941  Basecbs 17148  -gcsg 18857  Ringcrg 20127   freeLMod cfrlm 21520   Mat cmat 22127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-ot 4636  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-supp 8149  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-map 8824  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-sup 9439  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-fz 13489  df-struct 17084  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-mulr 17215  df-sca 17217  df-vsca 17218  df-ip 17219  df-tset 17220  df-ple 17221  df-ds 17223  df-hom 17225  df-cco 17226  df-0g 17391  df-prds 17397  df-pws 17399  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-grp 18858  df-minusg 18859  df-sbg 18860  df-subg 19039  df-cmn 19691  df-abl 19692  df-mgp 20029  df-rng 20047  df-ur 20076  df-ring 20129  df-subrg 20459  df-lmod 20616  df-lss 20687  df-sra 20930  df-rgmod 20931  df-dsmm 21506  df-frlm 21521  df-mat 22128
This theorem is referenced by:  matinvgcell  22157  dmatsubcl  22220  chmatval  22551  chpmat1dlem  22557  chpdmatlem2  22561  chpdmatlem3  22562
  Copyright terms: Public domain W3C validator