MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matsubgcell Structured version   Visualization version   GIF version

Theorem matsubgcell 21491
Description: Subtraction in the matrix ring is cell-wise. (Contributed by AV, 2-Aug-2019.)
Hypotheses
Ref Expression
matplusgcell.a 𝐴 = (𝑁 Mat 𝑅)
matplusgcell.b 𝐵 = (Base‘𝐴)
matsubgcell.s 𝑆 = (-g𝐴)
matsubgcell.m = (-g𝑅)
Assertion
Ref Expression
matsubgcell ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋𝑆𝑌)𝐽) = ((𝐼𝑋𝐽) (𝐼𝑌𝐽)))

Proof of Theorem matsubgcell
StepHypRef Expression
1 matsubgcell.s . . . . . 6 𝑆 = (-g𝐴)
2 matplusgcell.a . . . . . . . . . . 11 𝐴 = (𝑁 Mat 𝑅)
3 matplusgcell.b . . . . . . . . . . 11 𝐵 = (Base‘𝐴)
42, 3matrcl 21469 . . . . . . . . . 10 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
54simpld 494 . . . . . . . . 9 (𝑋𝐵𝑁 ∈ Fin)
65adantr 480 . . . . . . . 8 ((𝑋𝐵𝑌𝐵) → 𝑁 ∈ Fin)
763ad2ant2 1132 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑁 ∈ Fin)
8 simp1 1134 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑅 ∈ Ring)
9 eqid 2738 . . . . . . . 8 (𝑅 freeLMod (𝑁 × 𝑁)) = (𝑅 freeLMod (𝑁 × 𝑁))
102, 9matsubg 21489 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (-g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (-g𝐴))
117, 8, 10syl2anc 583 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (-g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (-g𝐴))
121, 11eqtr4id 2798 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑆 = (-g‘(𝑅 freeLMod (𝑁 × 𝑁))))
1312oveqd 7272 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑋𝑆𝑌) = (𝑋(-g‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑌))
14 eqid 2738 . . . . 5 (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘(𝑅 freeLMod (𝑁 × 𝑁)))
15 xpfi 9015 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin)
1615anidms 566 . . . . . . . . 9 (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ Fin)
1716adantr 480 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑁 × 𝑁) ∈ Fin)
184, 17syl 17 . . . . . . 7 (𝑋𝐵 → (𝑁 × 𝑁) ∈ Fin)
1918adantr 480 . . . . . 6 ((𝑋𝐵𝑌𝐵) → (𝑁 × 𝑁) ∈ Fin)
20193ad2ant2 1132 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑁 × 𝑁) ∈ Fin)
213eleq2i 2830 . . . . . . . . 9 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
2221biimpi 215 . . . . . . . 8 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
232, 9matbas 21470 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
244, 23syl 17 . . . . . . . 8 (𝑋𝐵 → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
2522, 24eleqtrrd 2842 . . . . . . 7 (𝑋𝐵𝑋 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
2625adantr 480 . . . . . 6 ((𝑋𝐵𝑌𝐵) → 𝑋 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
27263ad2ant2 1132 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑋 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
283eleq2i 2830 . . . . . . . . 9 (𝑌𝐵𝑌 ∈ (Base‘𝐴))
2928biimpi 215 . . . . . . . 8 (𝑌𝐵𝑌 ∈ (Base‘𝐴))
302, 3matrcl 21469 . . . . . . . . 9 (𝑌𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
3130, 23syl 17 . . . . . . . 8 (𝑌𝐵 → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
3229, 31eleqtrrd 2842 . . . . . . 7 (𝑌𝐵𝑌 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
3332adantl 481 . . . . . 6 ((𝑋𝐵𝑌𝐵) → 𝑌 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
34333ad2ant2 1132 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑌 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
35 matsubgcell.m . . . . 5 = (-g𝑅)
36 eqid 2738 . . . . 5 (-g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (-g‘(𝑅 freeLMod (𝑁 × 𝑁)))
379, 14, 8, 20, 27, 34, 35, 36frlmsubgval 20882 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑋(-g‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑌) = (𝑋f 𝑌))
3813, 37eqtrd 2778 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑋𝑆𝑌) = (𝑋f 𝑌))
3938oveqd 7272 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋𝑆𝑌)𝐽) = (𝐼(𝑋f 𝑌)𝐽))
40 df-ov 7258 . . 3 (𝐼(𝑋f 𝑌)𝐽) = ((𝑋f 𝑌)‘⟨𝐼, 𝐽⟩)
41 opelxpi 5617 . . . . . 6 ((𝐼𝑁𝐽𝑁) → ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁))
4241anim2i 616 . . . . 5 (((𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → ((𝑋𝐵𝑌𝐵) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)))
43423adant1 1128 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → ((𝑋𝐵𝑌𝐵) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)))
44 eqid 2738 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
452, 44, 3matbas2i 21479 . . . . . . 7 (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
46 elmapfn 8611 . . . . . . 7 (𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑋 Fn (𝑁 × 𝑁))
4745, 46syl 17 . . . . . 6 (𝑋𝐵𝑋 Fn (𝑁 × 𝑁))
4847adantr 480 . . . . 5 ((𝑋𝐵𝑌𝐵) → 𝑋 Fn (𝑁 × 𝑁))
492, 44, 3matbas2i 21479 . . . . . . 7 (𝑌𝐵𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
50 elmapfn 8611 . . . . . . 7 (𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑌 Fn (𝑁 × 𝑁))
5149, 50syl 17 . . . . . 6 (𝑌𝐵𝑌 Fn (𝑁 × 𝑁))
5251adantl 481 . . . . 5 ((𝑋𝐵𝑌𝐵) → 𝑌 Fn (𝑁 × 𝑁))
53 inidm 4149 . . . . 5 ((𝑁 × 𝑁) ∩ (𝑁 × 𝑁)) = (𝑁 × 𝑁)
54 df-ov 7258 . . . . . . 7 (𝐼𝑋𝐽) = (𝑋‘⟨𝐼, 𝐽⟩)
5554eqcomi 2747 . . . . . 6 (𝑋‘⟨𝐼, 𝐽⟩) = (𝐼𝑋𝐽)
5655a1i 11 . . . . 5 (((𝑋𝐵𝑌𝐵) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)) → (𝑋‘⟨𝐼, 𝐽⟩) = (𝐼𝑋𝐽))
57 df-ov 7258 . . . . . . 7 (𝐼𝑌𝐽) = (𝑌‘⟨𝐼, 𝐽⟩)
5857eqcomi 2747 . . . . . 6 (𝑌‘⟨𝐼, 𝐽⟩) = (𝐼𝑌𝐽)
5958a1i 11 . . . . 5 (((𝑋𝐵𝑌𝐵) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)) → (𝑌‘⟨𝐼, 𝐽⟩) = (𝐼𝑌𝐽))
6048, 52, 19, 19, 53, 56, 59ofval 7522 . . . 4 (((𝑋𝐵𝑌𝐵) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)) → ((𝑋f 𝑌)‘⟨𝐼, 𝐽⟩) = ((𝐼𝑋𝐽) (𝐼𝑌𝐽)))
6143, 60syl 17 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → ((𝑋f 𝑌)‘⟨𝐼, 𝐽⟩) = ((𝐼𝑋𝐽) (𝐼𝑌𝐽)))
6240, 61eqtrid 2790 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋f 𝑌)𝐽) = ((𝐼𝑋𝐽) (𝐼𝑌𝐽)))
6339, 62eqtrd 2778 1 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋𝑆𝑌)𝐽) = ((𝐼𝑋𝐽) (𝐼𝑌𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  cop 4564   × cxp 5578   Fn wfn 6413  cfv 6418  (class class class)co 7255  f cof 7509  m cmap 8573  Fincfn 8691  Basecbs 16840  -gcsg 18494  Ringcrg 19698   freeLMod cfrlm 20863   Mat cmat 21464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-ot 4567  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-0g 17069  df-prds 17075  df-pws 17077  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-mgp 19636  df-ur 19653  df-ring 19700  df-subrg 19937  df-lmod 20040  df-lss 20109  df-sra 20349  df-rgmod 20350  df-dsmm 20849  df-frlm 20864  df-mat 21465
This theorem is referenced by:  matinvgcell  21492  dmatsubcl  21555  chmatval  21886  chpmat1dlem  21892  chpdmatlem2  21896  chpdmatlem3  21897
  Copyright terms: Public domain W3C validator