MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matsubgcell Structured version   Visualization version   GIF version

Theorem matsubgcell 22157
Description: Subtraction in the matrix ring is cell-wise. (Contributed by AV, 2-Aug-2019.)
Hypotheses
Ref Expression
matplusgcell.a 𝐴 = (𝑁 Mat 𝑅)
matplusgcell.b 𝐵 = (Base‘𝐴)
matsubgcell.s 𝑆 = (-g𝐴)
matsubgcell.m = (-g𝑅)
Assertion
Ref Expression
matsubgcell ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋𝑆𝑌)𝐽) = ((𝐼𝑋𝐽) (𝐼𝑌𝐽)))

Proof of Theorem matsubgcell
StepHypRef Expression
1 matsubgcell.s . . . . . 6 𝑆 = (-g𝐴)
2 matplusgcell.a . . . . . . . . . . 11 𝐴 = (𝑁 Mat 𝑅)
3 matplusgcell.b . . . . . . . . . . 11 𝐵 = (Base‘𝐴)
42, 3matrcl 22133 . . . . . . . . . 10 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
54simpld 494 . . . . . . . . 9 (𝑋𝐵𝑁 ∈ Fin)
65adantr 480 . . . . . . . 8 ((𝑋𝐵𝑌𝐵) → 𝑁 ∈ Fin)
763ad2ant2 1133 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑁 ∈ Fin)
8 simp1 1135 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑅 ∈ Ring)
9 eqid 2731 . . . . . . . 8 (𝑅 freeLMod (𝑁 × 𝑁)) = (𝑅 freeLMod (𝑁 × 𝑁))
102, 9matsubg 22155 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (-g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (-g𝐴))
117, 8, 10syl2anc 583 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (-g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (-g𝐴))
121, 11eqtr4id 2790 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑆 = (-g‘(𝑅 freeLMod (𝑁 × 𝑁))))
1312oveqd 7429 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑋𝑆𝑌) = (𝑋(-g‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑌))
14 eqid 2731 . . . . 5 (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘(𝑅 freeLMod (𝑁 × 𝑁)))
15 xpfi 9321 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin)
1615anidms 566 . . . . . . . . 9 (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ Fin)
1716adantr 480 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑁 × 𝑁) ∈ Fin)
184, 17syl 17 . . . . . . 7 (𝑋𝐵 → (𝑁 × 𝑁) ∈ Fin)
1918adantr 480 . . . . . 6 ((𝑋𝐵𝑌𝐵) → (𝑁 × 𝑁) ∈ Fin)
20193ad2ant2 1133 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑁 × 𝑁) ∈ Fin)
213eleq2i 2824 . . . . . . . . 9 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
2221biimpi 215 . . . . . . . 8 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
232, 9matbas 22134 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
244, 23syl 17 . . . . . . . 8 (𝑋𝐵 → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
2522, 24eleqtrrd 2835 . . . . . . 7 (𝑋𝐵𝑋 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
2625adantr 480 . . . . . 6 ((𝑋𝐵𝑌𝐵) → 𝑋 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
27263ad2ant2 1133 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑋 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
283eleq2i 2824 . . . . . . . . 9 (𝑌𝐵𝑌 ∈ (Base‘𝐴))
2928biimpi 215 . . . . . . . 8 (𝑌𝐵𝑌 ∈ (Base‘𝐴))
302, 3matrcl 22133 . . . . . . . . 9 (𝑌𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
3130, 23syl 17 . . . . . . . 8 (𝑌𝐵 → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
3229, 31eleqtrrd 2835 . . . . . . 7 (𝑌𝐵𝑌 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
3332adantl 481 . . . . . 6 ((𝑋𝐵𝑌𝐵) → 𝑌 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
34333ad2ant2 1133 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑌 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
35 matsubgcell.m . . . . 5 = (-g𝑅)
36 eqid 2731 . . . . 5 (-g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (-g‘(𝑅 freeLMod (𝑁 × 𝑁)))
379, 14, 8, 20, 27, 34, 35, 36frlmsubgval 21540 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑋(-g‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑌) = (𝑋f 𝑌))
3813, 37eqtrd 2771 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑋𝑆𝑌) = (𝑋f 𝑌))
3938oveqd 7429 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋𝑆𝑌)𝐽) = (𝐼(𝑋f 𝑌)𝐽))
40 df-ov 7415 . . 3 (𝐼(𝑋f 𝑌)𝐽) = ((𝑋f 𝑌)‘⟨𝐼, 𝐽⟩)
41 opelxpi 5713 . . . . . 6 ((𝐼𝑁𝐽𝑁) → ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁))
4241anim2i 616 . . . . 5 (((𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → ((𝑋𝐵𝑌𝐵) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)))
43423adant1 1129 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → ((𝑋𝐵𝑌𝐵) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)))
44 eqid 2731 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
452, 44, 3matbas2i 22145 . . . . . . 7 (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
46 elmapfn 8863 . . . . . . 7 (𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑋 Fn (𝑁 × 𝑁))
4745, 46syl 17 . . . . . 6 (𝑋𝐵𝑋 Fn (𝑁 × 𝑁))
4847adantr 480 . . . . 5 ((𝑋𝐵𝑌𝐵) → 𝑋 Fn (𝑁 × 𝑁))
492, 44, 3matbas2i 22145 . . . . . . 7 (𝑌𝐵𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
50 elmapfn 8863 . . . . . . 7 (𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑌 Fn (𝑁 × 𝑁))
5149, 50syl 17 . . . . . 6 (𝑌𝐵𝑌 Fn (𝑁 × 𝑁))
5251adantl 481 . . . . 5 ((𝑋𝐵𝑌𝐵) → 𝑌 Fn (𝑁 × 𝑁))
53 inidm 4218 . . . . 5 ((𝑁 × 𝑁) ∩ (𝑁 × 𝑁)) = (𝑁 × 𝑁)
54 df-ov 7415 . . . . . . 7 (𝐼𝑋𝐽) = (𝑋‘⟨𝐼, 𝐽⟩)
5554eqcomi 2740 . . . . . 6 (𝑋‘⟨𝐼, 𝐽⟩) = (𝐼𝑋𝐽)
5655a1i 11 . . . . 5 (((𝑋𝐵𝑌𝐵) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)) → (𝑋‘⟨𝐼, 𝐽⟩) = (𝐼𝑋𝐽))
57 df-ov 7415 . . . . . . 7 (𝐼𝑌𝐽) = (𝑌‘⟨𝐼, 𝐽⟩)
5857eqcomi 2740 . . . . . 6 (𝑌‘⟨𝐼, 𝐽⟩) = (𝐼𝑌𝐽)
5958a1i 11 . . . . 5 (((𝑋𝐵𝑌𝐵) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)) → (𝑌‘⟨𝐼, 𝐽⟩) = (𝐼𝑌𝐽))
6048, 52, 19, 19, 53, 56, 59ofval 7685 . . . 4 (((𝑋𝐵𝑌𝐵) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)) → ((𝑋f 𝑌)‘⟨𝐼, 𝐽⟩) = ((𝐼𝑋𝐽) (𝐼𝑌𝐽)))
6143, 60syl 17 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → ((𝑋f 𝑌)‘⟨𝐼, 𝐽⟩) = ((𝐼𝑋𝐽) (𝐼𝑌𝐽)))
6240, 61eqtrid 2783 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋f 𝑌)𝐽) = ((𝐼𝑋𝐽) (𝐼𝑌𝐽)))
6339, 62eqtrd 2771 1 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋𝑆𝑌)𝐽) = ((𝐼𝑋𝐽) (𝐼𝑌𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  Vcvv 3473  cop 4634   × cxp 5674   Fn wfn 6538  cfv 6543  (class class class)co 7412  f cof 7672  m cmap 8824  Fincfn 8943  Basecbs 17149  -gcsg 18858  Ringcrg 20128   freeLMod cfrlm 21521   Mat cmat 22128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-ot 4637  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8151  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-er 8707  df-map 8826  df-ixp 8896  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-fsupp 9366  df-sup 9441  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-2 12280  df-3 12281  df-4 12282  df-5 12283  df-6 12284  df-7 12285  df-8 12286  df-9 12287  df-n0 12478  df-z 12564  df-dec 12683  df-uz 12828  df-fz 13490  df-struct 17085  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-mulr 17216  df-sca 17218  df-vsca 17219  df-ip 17220  df-tset 17221  df-ple 17222  df-ds 17224  df-hom 17226  df-cco 17227  df-0g 17392  df-prds 17398  df-pws 17400  df-mgm 18566  df-sgrp 18645  df-mnd 18661  df-grp 18859  df-minusg 18860  df-sbg 18861  df-subg 19040  df-cmn 19692  df-abl 19693  df-mgp 20030  df-rng 20048  df-ur 20077  df-ring 20130  df-subrg 20460  df-lmod 20617  df-lss 20688  df-sra 20931  df-rgmod 20932  df-dsmm 21507  df-frlm 21522  df-mat 22129
This theorem is referenced by:  matinvgcell  22158  dmatsubcl  22221  chmatval  22552  chpmat1dlem  22558  chpdmatlem2  22562  chpdmatlem3  22563
  Copyright terms: Public domain W3C validator