MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matsubgcell Structured version   Visualization version   GIF version

Theorem matsubgcell 21666
Description: Subtraction in the matrix ring is cell-wise. (Contributed by AV, 2-Aug-2019.)
Hypotheses
Ref Expression
matplusgcell.a 𝐴 = (𝑁 Mat 𝑅)
matplusgcell.b 𝐵 = (Base‘𝐴)
matsubgcell.s 𝑆 = (-g𝐴)
matsubgcell.m = (-g𝑅)
Assertion
Ref Expression
matsubgcell ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋𝑆𝑌)𝐽) = ((𝐼𝑋𝐽) (𝐼𝑌𝐽)))

Proof of Theorem matsubgcell
StepHypRef Expression
1 matsubgcell.s . . . . . 6 𝑆 = (-g𝐴)
2 matplusgcell.a . . . . . . . . . . 11 𝐴 = (𝑁 Mat 𝑅)
3 matplusgcell.b . . . . . . . . . . 11 𝐵 = (Base‘𝐴)
42, 3matrcl 21642 . . . . . . . . . 10 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
54simpld 495 . . . . . . . . 9 (𝑋𝐵𝑁 ∈ Fin)
65adantr 481 . . . . . . . 8 ((𝑋𝐵𝑌𝐵) → 𝑁 ∈ Fin)
763ad2ant2 1133 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑁 ∈ Fin)
8 simp1 1135 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑅 ∈ Ring)
9 eqid 2737 . . . . . . . 8 (𝑅 freeLMod (𝑁 × 𝑁)) = (𝑅 freeLMod (𝑁 × 𝑁))
102, 9matsubg 21664 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (-g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (-g𝐴))
117, 8, 10syl2anc 584 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (-g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (-g𝐴))
121, 11eqtr4id 2796 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑆 = (-g‘(𝑅 freeLMod (𝑁 × 𝑁))))
1312oveqd 7334 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑋𝑆𝑌) = (𝑋(-g‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑌))
14 eqid 2737 . . . . 5 (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘(𝑅 freeLMod (𝑁 × 𝑁)))
15 xpfi 9161 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin)
1615anidms 567 . . . . . . . . 9 (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ Fin)
1716adantr 481 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑁 × 𝑁) ∈ Fin)
184, 17syl 17 . . . . . . 7 (𝑋𝐵 → (𝑁 × 𝑁) ∈ Fin)
1918adantr 481 . . . . . 6 ((𝑋𝐵𝑌𝐵) → (𝑁 × 𝑁) ∈ Fin)
20193ad2ant2 1133 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑁 × 𝑁) ∈ Fin)
213eleq2i 2829 . . . . . . . . 9 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
2221biimpi 215 . . . . . . . 8 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
232, 9matbas 21643 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
244, 23syl 17 . . . . . . . 8 (𝑋𝐵 → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
2522, 24eleqtrrd 2841 . . . . . . 7 (𝑋𝐵𝑋 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
2625adantr 481 . . . . . 6 ((𝑋𝐵𝑌𝐵) → 𝑋 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
27263ad2ant2 1133 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑋 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
283eleq2i 2829 . . . . . . . . 9 (𝑌𝐵𝑌 ∈ (Base‘𝐴))
2928biimpi 215 . . . . . . . 8 (𝑌𝐵𝑌 ∈ (Base‘𝐴))
302, 3matrcl 21642 . . . . . . . . 9 (𝑌𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
3130, 23syl 17 . . . . . . . 8 (𝑌𝐵 → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
3229, 31eleqtrrd 2841 . . . . . . 7 (𝑌𝐵𝑌 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
3332adantl 482 . . . . . 6 ((𝑋𝐵𝑌𝐵) → 𝑌 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
34333ad2ant2 1133 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑌 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
35 matsubgcell.m . . . . 5 = (-g𝑅)
36 eqid 2737 . . . . 5 (-g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (-g‘(𝑅 freeLMod (𝑁 × 𝑁)))
379, 14, 8, 20, 27, 34, 35, 36frlmsubgval 21055 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑋(-g‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑌) = (𝑋f 𝑌))
3813, 37eqtrd 2777 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑋𝑆𝑌) = (𝑋f 𝑌))
3938oveqd 7334 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋𝑆𝑌)𝐽) = (𝐼(𝑋f 𝑌)𝐽))
40 df-ov 7320 . . 3 (𝐼(𝑋f 𝑌)𝐽) = ((𝑋f 𝑌)‘⟨𝐼, 𝐽⟩)
41 opelxpi 5645 . . . . . 6 ((𝐼𝑁𝐽𝑁) → ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁))
4241anim2i 617 . . . . 5 (((𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → ((𝑋𝐵𝑌𝐵) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)))
43423adant1 1129 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → ((𝑋𝐵𝑌𝐵) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)))
44 eqid 2737 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
452, 44, 3matbas2i 21654 . . . . . . 7 (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
46 elmapfn 8703 . . . . . . 7 (𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑋 Fn (𝑁 × 𝑁))
4745, 46syl 17 . . . . . 6 (𝑋𝐵𝑋 Fn (𝑁 × 𝑁))
4847adantr 481 . . . . 5 ((𝑋𝐵𝑌𝐵) → 𝑋 Fn (𝑁 × 𝑁))
492, 44, 3matbas2i 21654 . . . . . . 7 (𝑌𝐵𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
50 elmapfn 8703 . . . . . . 7 (𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑌 Fn (𝑁 × 𝑁))
5149, 50syl 17 . . . . . 6 (𝑌𝐵𝑌 Fn (𝑁 × 𝑁))
5251adantl 482 . . . . 5 ((𝑋𝐵𝑌𝐵) → 𝑌 Fn (𝑁 × 𝑁))
53 inidm 4163 . . . . 5 ((𝑁 × 𝑁) ∩ (𝑁 × 𝑁)) = (𝑁 × 𝑁)
54 df-ov 7320 . . . . . . 7 (𝐼𝑋𝐽) = (𝑋‘⟨𝐼, 𝐽⟩)
5554eqcomi 2746 . . . . . 6 (𝑋‘⟨𝐼, 𝐽⟩) = (𝐼𝑋𝐽)
5655a1i 11 . . . . 5 (((𝑋𝐵𝑌𝐵) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)) → (𝑋‘⟨𝐼, 𝐽⟩) = (𝐼𝑋𝐽))
57 df-ov 7320 . . . . . . 7 (𝐼𝑌𝐽) = (𝑌‘⟨𝐼, 𝐽⟩)
5857eqcomi 2746 . . . . . 6 (𝑌‘⟨𝐼, 𝐽⟩) = (𝐼𝑌𝐽)
5958a1i 11 . . . . 5 (((𝑋𝐵𝑌𝐵) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)) → (𝑌‘⟨𝐼, 𝐽⟩) = (𝐼𝑌𝐽))
6048, 52, 19, 19, 53, 56, 59ofval 7586 . . . 4 (((𝑋𝐵𝑌𝐵) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)) → ((𝑋f 𝑌)‘⟨𝐼, 𝐽⟩) = ((𝐼𝑋𝐽) (𝐼𝑌𝐽)))
6143, 60syl 17 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → ((𝑋f 𝑌)‘⟨𝐼, 𝐽⟩) = ((𝐼𝑋𝐽) (𝐼𝑌𝐽)))
6240, 61eqtrid 2789 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋f 𝑌)𝐽) = ((𝐼𝑋𝐽) (𝐼𝑌𝐽)))
6339, 62eqtrd 2777 1 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋𝑆𝑌)𝐽) = ((𝐼𝑋𝐽) (𝐼𝑌𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  Vcvv 3441  cop 4577   × cxp 5606   Fn wfn 6461  cfv 6466  (class class class)co 7317  f cof 7573  m cmap 8665  Fincfn 8783  Basecbs 16989  -gcsg 18655  Ringcrg 19858   freeLMod cfrlm 21036   Mat cmat 21637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7630  ax-cnex 11007  ax-resscn 11008  ax-1cn 11009  ax-icn 11010  ax-addcl 11011  ax-addrcl 11012  ax-mulcl 11013  ax-mulrcl 11014  ax-mulcom 11015  ax-addass 11016  ax-mulass 11017  ax-distr 11018  ax-i2m1 11019  ax-1ne0 11020  ax-1rid 11021  ax-rnegex 11022  ax-rrecex 11023  ax-cnre 11024  ax-pre-lttri 11025  ax-pre-lttrn 11026  ax-pre-ltadd 11027  ax-pre-mulgt0 11028
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-ot 4580  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5563  df-we 5565  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-pred 6225  df-ord 6292  df-on 6293  df-lim 6294  df-suc 6295  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-riota 7274  df-ov 7320  df-oprab 7321  df-mpo 7322  df-of 7575  df-om 7760  df-1st 7878  df-2nd 7879  df-supp 8027  df-frecs 8146  df-wrecs 8177  df-recs 8251  df-rdg 8290  df-1o 8346  df-er 8548  df-map 8667  df-ixp 8736  df-en 8784  df-dom 8785  df-sdom 8786  df-fin 8787  df-fsupp 9206  df-sup 9278  df-pnf 11091  df-mnf 11092  df-xr 11093  df-ltxr 11094  df-le 11095  df-sub 11287  df-neg 11288  df-nn 12054  df-2 12116  df-3 12117  df-4 12118  df-5 12119  df-6 12120  df-7 12121  df-8 12122  df-9 12123  df-n0 12314  df-z 12400  df-dec 12518  df-uz 12663  df-fz 13320  df-struct 16925  df-sets 16942  df-slot 16960  df-ndx 16972  df-base 16990  df-ress 17019  df-plusg 17052  df-mulr 17053  df-sca 17055  df-vsca 17056  df-ip 17057  df-tset 17058  df-ple 17059  df-ds 17061  df-hom 17063  df-cco 17064  df-0g 17229  df-prds 17235  df-pws 17237  df-mgm 18403  df-sgrp 18452  df-mnd 18463  df-grp 18656  df-minusg 18657  df-sbg 18658  df-subg 18828  df-mgp 19796  df-ur 19813  df-ring 19860  df-subrg 20104  df-lmod 20208  df-lss 20277  df-sra 20517  df-rgmod 20518  df-dsmm 21022  df-frlm 21037  df-mat 21638
This theorem is referenced by:  matinvgcell  21667  dmatsubcl  21730  chmatval  22061  chpmat1dlem  22067  chpdmatlem2  22071  chpdmatlem3  22072
  Copyright terms: Public domain W3C validator