Proof of Theorem modaddb
| Step | Hyp | Ref
| Expression |
| 1 | | modadd1 13876 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷)) |
| 2 | 1 | 3expa 1118 |
. 2
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+))
∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷)) |
| 3 | | simpll 766 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+))
→ 𝐴 ∈
ℝ) |
| 4 | | simprl 770 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+))
→ 𝐶 ∈
ℝ) |
| 5 | 3, 4 | readdcld 11209 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+))
→ (𝐴 + 𝐶) ∈
ℝ) |
| 6 | | simplr 768 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+))
→ 𝐵 ∈
ℝ) |
| 7 | 6, 4 | readdcld 11209 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+))
→ (𝐵 + 𝐶) ∈
ℝ) |
| 8 | 5, 7 | jca 511 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+))
→ ((𝐴 + 𝐶) ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ)) |
| 9 | 8 | adantr 480 |
. . . 4
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+))
∧ ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷)) → ((𝐴 + 𝐶) ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ)) |
| 10 | | renegcl 11491 |
. . . . . . 7
⊢ (𝐶 ∈ ℝ → -𝐶 ∈
ℝ) |
| 11 | 10 | anim1i 615 |
. . . . . 6
⊢ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (-𝐶 ∈ ℝ
∧ 𝐷 ∈
ℝ+)) |
| 12 | 11 | adantl 481 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+))
→ (-𝐶 ∈ ℝ
∧ 𝐷 ∈
ℝ+)) |
| 13 | 12 | adantr 480 |
. . . 4
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+))
∧ ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷)) → (-𝐶 ∈ ℝ ∧ 𝐷 ∈
ℝ+)) |
| 14 | | simpr 484 |
. . . 4
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+))
∧ ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷)) → ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷)) |
| 15 | | modadd1 13876 |
. . . 4
⊢ ((((𝐴 + 𝐶) ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ) ∧ (-𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+) ∧ ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷)) → (((𝐴 + 𝐶) + -𝐶) mod 𝐷) = (((𝐵 + 𝐶) + -𝐶) mod 𝐷)) |
| 16 | 9, 13, 14, 15 | syl3anc 1373 |
. . 3
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+))
∧ ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷)) → (((𝐴 + 𝐶) + -𝐶) mod 𝐷) = (((𝐵 + 𝐶) + -𝐶) mod 𝐷)) |
| 17 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈
ℝ) |
| 18 | 17 | recnd 11208 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈
ℂ) |
| 19 | 18 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+))
→ 𝐴 ∈
ℂ) |
| 20 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ 𝐶 ∈
ℝ) |
| 21 | 20 | recnd 11208 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ 𝐶 ∈
ℂ) |
| 22 | 21 | adantl 481 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+))
→ 𝐶 ∈
ℂ) |
| 23 | 19, 22 | addcld 11199 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+))
→ (𝐴 + 𝐶) ∈
ℂ) |
| 24 | 23, 22 | negsubd 11545 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+))
→ ((𝐴 + 𝐶) + -𝐶) = ((𝐴 + 𝐶) − 𝐶)) |
| 25 | 19, 22 | pncand 11540 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+))
→ ((𝐴 + 𝐶) − 𝐶) = 𝐴) |
| 26 | 24, 25 | eqtr2d 2766 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+))
→ 𝐴 = ((𝐴 + 𝐶) + -𝐶)) |
| 27 | 26 | oveq1d 7404 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+))
→ (𝐴 mod 𝐷) = (((𝐴 + 𝐶) + -𝐶) mod 𝐷)) |
| 28 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈
ℝ) |
| 29 | 28 | recnd 11208 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈
ℂ) |
| 30 | 29 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+))
→ 𝐵 ∈
ℂ) |
| 31 | 30, 22 | addcld 11199 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+))
→ (𝐵 + 𝐶) ∈
ℂ) |
| 32 | 31, 22 | negsubd 11545 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+))
→ ((𝐵 + 𝐶) + -𝐶) = ((𝐵 + 𝐶) − 𝐶)) |
| 33 | 30, 22 | pncand 11540 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+))
→ ((𝐵 + 𝐶) − 𝐶) = 𝐵) |
| 34 | 32, 33 | eqtr2d 2766 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+))
→ 𝐵 = ((𝐵 + 𝐶) + -𝐶)) |
| 35 | 34 | oveq1d 7404 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+))
→ (𝐵 mod 𝐷) = (((𝐵 + 𝐶) + -𝐶) mod 𝐷)) |
| 36 | 27, 35 | eqeq12d 2746 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+))
→ ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) ↔ (((𝐴 + 𝐶) + -𝐶) mod 𝐷) = (((𝐵 + 𝐶) + -𝐶) mod 𝐷))) |
| 37 | 36 | adantr 480 |
. . 3
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+))
∧ ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷)) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) ↔ (((𝐴 + 𝐶) + -𝐶) mod 𝐷) = (((𝐵 + 𝐶) + -𝐶) mod 𝐷))) |
| 38 | 16, 37 | mpbird 257 |
. 2
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+))
∧ ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷)) → (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) |
| 39 | 2, 38 | impbida 800 |
1
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+))
→ ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) ↔ ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷))) |