MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modaddid Structured version   Visualization version   GIF version

Theorem modaddid 13833
Description: The sums of two nonnegative integers less than the modulus and an integer are equal iff the two nonnegative integers are equal. (Contributed by AV, 14-Nov-2025.)
Hypothesis
Ref Expression
modaddid.i 𝐼 = (0..^𝑁)
Assertion
Ref Expression
modaddid ((𝑁 ∈ (ℤ‘3) ∧ (𝑋𝐼𝑌𝐼) ∧ 𝐾 ∈ ℤ) → (((𝑋 + 𝐾) mod 𝑁) = ((𝑌 + 𝐾) mod 𝑁) ↔ 𝑋 = 𝑌))

Proof of Theorem modaddid
StepHypRef Expression
1 elfzoelz 13581 . . . . . . 7 (𝑋 ∈ (0..^𝑁) → 𝑋 ∈ ℤ)
21zred 12599 . . . . . 6 (𝑋 ∈ (0..^𝑁) → 𝑋 ∈ ℝ)
3 modaddid.i . . . . . 6 𝐼 = (0..^𝑁)
42, 3eleq2s 2846 . . . . 5 (𝑋𝐼𝑋 ∈ ℝ)
5 elfzoelz 13581 . . . . . . 7 (𝑌 ∈ (0..^𝑁) → 𝑌 ∈ ℤ)
65zred 12599 . . . . . 6 (𝑌 ∈ (0..^𝑁) → 𝑌 ∈ ℝ)
76, 3eleq2s 2846 . . . . 5 (𝑌𝐼𝑌 ∈ ℝ)
84, 7anim12i 613 . . . 4 ((𝑋𝐼𝑌𝐼) → (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))
983ad2ant2 1134 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ (𝑋𝐼𝑌𝐼) ∧ 𝐾 ∈ ℤ) → (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))
10 eluz3nn 12809 . . . . 5 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
1110nnrpd 12954 . . . 4 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℝ+)
12 zre 12494 . . . 4 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
1311, 12anim12ci 614 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ ℤ) → (𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ+))
14 modaddb 13832 . . 3 (((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ+)) → ((𝑋 mod 𝑁) = (𝑌 mod 𝑁) ↔ ((𝑋 + 𝐾) mod 𝑁) = ((𝑌 + 𝐾) mod 𝑁)))
159, 13, 143imp3i2an 1346 . 2 ((𝑁 ∈ (ℤ‘3) ∧ (𝑋𝐼𝑌𝐼) ∧ 𝐾 ∈ ℤ) → ((𝑋 mod 𝑁) = (𝑌 mod 𝑁) ↔ ((𝑋 + 𝐾) mod 𝑁) = ((𝑌 + 𝐾) mod 𝑁)))
16 zmodidfzoimp 13824 . . . . 5 (𝑋 ∈ (0..^𝑁) → (𝑋 mod 𝑁) = 𝑋)
1716, 3eleq2s 2846 . . . 4 (𝑋𝐼 → (𝑋 mod 𝑁) = 𝑋)
18 zmodidfzoimp 13824 . . . . 5 (𝑌 ∈ (0..^𝑁) → (𝑌 mod 𝑁) = 𝑌)
1918, 3eleq2s 2846 . . . 4 (𝑌𝐼 → (𝑌 mod 𝑁) = 𝑌)
2017, 19eqeqan12d 2743 . . 3 ((𝑋𝐼𝑌𝐼) → ((𝑋 mod 𝑁) = (𝑌 mod 𝑁) ↔ 𝑋 = 𝑌))
21203ad2ant2 1134 . 2 ((𝑁 ∈ (ℤ‘3) ∧ (𝑋𝐼𝑌𝐼) ∧ 𝐾 ∈ ℤ) → ((𝑋 mod 𝑁) = (𝑌 mod 𝑁) ↔ 𝑋 = 𝑌))
2215, 21bitr3d 281 1 ((𝑁 ∈ (ℤ‘3) ∧ (𝑋𝐼𝑌𝐼) ∧ 𝐾 ∈ ℤ) → (((𝑋 + 𝐾) mod 𝑁) = ((𝑌 + 𝐾) mod 𝑁) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  cr 11027  0cc0 11028   + caddc 11031  3c3 12203  cz 12490  cuz 12754  +crp 12912  ..^cfzo 13576   mod cmo 13792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-n0 12404  df-z 12491  df-uz 12755  df-rp 12913  df-fz 13430  df-fzo 13577  df-fl 13715  df-mod 13793
This theorem is referenced by:  gpgedg2ov  48070  gpgedg2iv  48071
  Copyright terms: Public domain W3C validator