![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsumshft | Structured version Visualization version GIF version |
Description: Index shift of a finite sum. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) (Proof shortened by AV, 8-Sep-2019.) |
Ref | Expression |
---|---|
fsumrev.1 | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
fsumrev.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
fsumrev.3 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
fsumrev.4 | ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
fsumshft.5 | ⊢ (𝑗 = (𝑘 − 𝐾) → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
fsumshft | ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumshft.5 | . 2 ⊢ (𝑗 = (𝑘 − 𝐾) → 𝐴 = 𝐵) | |
2 | fzfid 13938 | . 2 ⊢ (𝜑 → ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∈ Fin) | |
3 | fsumrev.1 | . . 3 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
4 | fsumrev.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
5 | fsumrev.3 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
6 | 3, 4, 5 | mptfzshft 15724 | . 2 ⊢ (𝜑 → (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗 − 𝐾)):((𝑀 + 𝐾)...(𝑁 + 𝐾))–1-1-onto→(𝑀...𝑁)) |
7 | oveq1 7416 | . . . 4 ⊢ (𝑗 = 𝑘 → (𝑗 − 𝐾) = (𝑘 − 𝐾)) | |
8 | eqid 2733 | . . . 4 ⊢ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗 − 𝐾)) = (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗 − 𝐾)) | |
9 | ovex 7442 | . . . 4 ⊢ (𝑘 − 𝐾) ∈ V | |
10 | 7, 8, 9 | fvmpt 6999 | . . 3 ⊢ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → ((𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗 − 𝐾))‘𝑘) = (𝑘 − 𝐾)) |
11 | 10 | adantl 483 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → ((𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗 − 𝐾))‘𝑘) = (𝑘 − 𝐾)) |
12 | fsumrev.4 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) | |
13 | 1, 2, 6, 11, 12 | fsumf1o 15669 | 1 ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ↦ cmpt 5232 ‘cfv 6544 (class class class)co 7409 ℂcc 11108 + caddc 11113 − cmin 11444 ℤcz 12558 ...cfz 13484 Σcsu 15632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-inf2 9636 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-sup 9437 df-oi 9505 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-n0 12473 df-z 12559 df-uz 12823 df-rp 12975 df-fz 13485 df-fzo 13628 df-seq 13967 df-exp 14028 df-hash 14291 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-clim 15432 df-sum 15633 |
This theorem is referenced by: fsumshftm 15727 binomlem 15775 binomfallfaclem2 15984 bpolydiflem 15998 pwp1fsum 16334 dvtaylp 25882 fsum2dsub 33619 fwddifnp1 35137 fsumshftd 37822 sticksstones10 40971 sticksstones12a 40973 dvnmul 44659 elaa2lem 44949 altgsumbcALT 47029 |
Copyright terms: Public domain | W3C validator |